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In plants, histone H3 lysine methyltransferases are important
in gene silencing and developmental regulation; however, the
roles of histone H4 methylation in plant development remain
unclear. Recent studies found a type II histone arginine
methyltransferase, AtPRTM5, which is involved in promoting
growth and flowering. Here, we purified a dimerized plant-
specific histone H4 methyltransferase, plant histone arginine
methyltransferase 10 (PHRMT10), from cauliflower. Arabidopsis
thaliana protein arginine methyltransferase 10 (AtPRMT10)—the
Arabidopsis homologue of PHRMT10—was shown to be a type I
PRMT, which preferentially asymmetrically methylated histone
H4R3 in vitro. Genetic disruption of AtPRMT10 resulted in late
flowering by upregulating FLOWERING LOCUS C (FLC) tran-
script levels. In addition, we show that AtPRMT10 functions
genetically separate from AtPRMT5, but that each acts to fine-
tune expression of FLC. This work adds an extra layer of
complexity to flowering-time regulation and also sheds light on
the importance of asymmetric arginine methylation in plant
development.
Keywords: AtPRMT10; asymmetric arginine methylation; FLC;
flowering time
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INTRODUCTION
Histone methylation at lysine and arginine residues is one of the
most complex and important covalent modifications in eukaryotic
organisms (Bannister & Kouzarides, 2005). In animals, crucial
roles of arginine methylation in transcriptional regulation,
RNA processing, nuclear transport, DNA-damage response and

signal transduction are just emerging (Bedford & Richard, 2005;
Wysocka et al, 2006).

Protein arginine methyltransferases (PRMTs) catalyse the
transfer of methyl groups from S-adenosyl-L-methionine (SAM) to
the guanidino nitrogen atoms of arginine residues; all active
PRMTs in mammals catalyse the formation of o-monomethyl-
arginine (MMA). Type I and type II enzymes further catalyse the
formation of asymmetric (ADMA) or symmetric (SDMA) dimethyl
arginine, respectively. In mammals, PRMT1 and PRMT5 represent
the main type I and type II methyltransferase activities to
both mono- and dimethylate histone H4R3 asymmetrically or
symmetrically, respectively (Bedford & Richard, 2005). Embryos
of prmt1�/� knockout mice died soon after implantation,
indicating its necessity for development (Pawlak et al, 2000).

In Arabidopsis thaliana, several histone H3 lysine methyl-
transferases have been identified to be important in gene silencing
and developmental regulation (Jackson et al, 2002; Kim et al,
2005; Naumann et al, 2005; Zhao et al, 2005; Ebbs & Bender,
2006). Recently, A. thaliana protein arginine methyltransferase
5 (AtPRMT5), a type II enzyme and the Arabidopsis homologue of
human PRMT5, was shown to symmetrically dimethylate histone
H4R3. Mutations in AtPRMT5 resulted in several developmental
defects, such as growth retardation, dark green leaves and late
flowering (Pei et al, 2007; Wang et al, 2007); however, the roles of
asymmetrical dimethylation of histone H4 in plant development
remain unknown.

RESULTS AND DISCUSSION
Purification of a histone H4 methyltransferase
To identify histone methyltransferases in plants, we used a
conventional biochemical approach to directly purify a histone
H4-specific methyltransferase from cauliflower by following
methyltransferase activity towards calf thymus histones (Fig 1).
The H4-specific methyltransferase activity peak was separated
into two peaks on a phenyl Sepharose column (Fig 1B), and the
latter was separated into another two peaks on a DEAE 5PW
column (Fig 1C). After final fractionation over a gel filtration
column, two closely migrating bands of around 42 kDa were
resolved by using SDS–polyacrylamide gel electrophoresis (SDS–
PAGE), which were eluted with a predicted mass of 85 kDa from
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the gel filtration column (Fig 1D, top panel). These proteins
correlated with the enzymatic activity, indicating that the putative
purified enzyme exists either as a dimer or in a protein complex
(Fig 1D, middle panel). These bands were excised and subjected
to mass spectrometry analysis and both showed great similarity to
a putative AtPRMT at locus At1g04870 except for a few amino-
acid substitutions (Fig 1E,F).

Previously, nine PRMTs (PRMT1–PRMT9) have been reported
in mammals (Bedford & Richard, 2005; Cook et al, 2006). We
searched the Arabidopsis genome for AtPRMTs, and a gene family
containing nine members was identified and named based on their

animal counterparts (supplementary Fig S1 online). Phylogenetic
analysis showed that the polypeptide encoded by At1g04870 had
low similarity to other Arabidopsis and mammal PRMTs, but had
high similarity to a rice putative methyltransferase encoded by rice
Os06g05090 (supplementary Figs S1,S2 online). Thus, we named
this protein AtPRMT10 and the Brassica counterpart PHRMT10 for
plant histone arginine methyltransferase 10.

The AtPRMT10 complementary DNA encodes a 383-amino-acids
polypeptide (NP_563720) with a calculated molecular mass of
43,130 Da. The final gel filtration fractions probed with polyclonal
antibody against full-length AtPRMT10 showed two closely migrating
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Fig 1 | Purification and identification of a plant histone H4 methyltransferase from cauliflower. (A) Purification scheme of the histone H4

methyltransferase. BA, BD and BC represent different buffers and detailed information is listed in the Supplementary information online. Numbers

represent salt concentration (mM). (B,C) Histone methylation assay of fractions derived from (B) the phenyl Sepharose column and (C) the DEAE-

5PW column. In and Ft represent input and flow through, respectively. Numbers above the gel lanes indicate fraction numbers. (D) Silver staining

(top), methyltransferase activity (middle) and immunoblot analysis using anti-AtPRMT10 (bottom) of fractions derived from the Superdex200 column.

Proteins co-fractionated with H4 methyltransferase activity are indicated by arrowheads. Elution profile of molecular weight standard is indicated at

the top. Numbers on the left indicate molecular weight standard of SDS–PAGE. (E) Both bands with similarity to AtPRMT10 were analysed by mass

spectrometry. Peptides obtained from each band by tandem mass spectrometry analysis are listed. Numbers represent the amino acid number of

AtPRMT10. Amino acids that are underlined are different between PHRMT10 and AtPRMT10, and are summarized in (F). AtPRMT10, Arabidopsis

thaliana protein arginine methyltransferase 10; SDS–PAGE, SDS–polyacrylamide gel electrophoresis.
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bands around 42 kDa that matched the activity and the silver-stained
gel (Fig 1D, bottom panel). In combination with the gel filtration and
mass spectrometry data, it is confirmed that PHRMT10 is responsible
for the methyltransferase activity we identified.

Asymmetrical dimethylation of H4R3 by AtPRMT10
We also used Arabidopsis as a model system to explore the
biological roles of PHRMT10. AtPRMT10 has relatively conserved
S-adenosyl methionine (AdoMet)-dependent methyltransferase
motifs I, post I, II, III and THW loop domains that are common
to all PRMTs indicating that AtPRMT10 might have enzymatic
activity (Bedford & Richard, 2005; supplementary Fig S2 online).
In vitro protein methylation assays indicated that AtPRMT10
predominantly methylated calf thymus histones H4 and H2A, and
a non-histone protein myelin basic protein, which is a common
PRMT substrate, but not oligonucleosomes (Fig 2A). The ability of
AtPRMT10 to methylate a glutathione-S-transferase (GST) fusion
protein containing the amino-terminal amino acids (1–54) of
histone H4 (H4N R3), but only weakly methylate a mutant form
with arginine 3 changed to lysine (H4N R3K), indicated that
AtPRMT10 was mainly an H4R3-specific methyltransferase
(Fig 2B). We also observed automethylation of AtPRMT10 when

the substrate was not optimal or when no substrate was present
(Fig 2A,B). Furthermore, calf thymus histone H4 methylated by
AtPRMT10 could be recognized by an antibody against asym-
metrically dimethylated H4R3 (H4R3me2a), indicating that
AtPRMT10 might be a type I PRMT (Fig 2C). In addition, a
thin-layer chromatography (TLC) assay confirmed that arginine
residues methylated by AtPRMT10 and PRMT1—a well-known
type I PRMT—co-migrated with MMA and ADMA, but not with
SDMA (Fig 2D). These results indicate that AtPRMT10 is a type I
PRMT and preferentially methylates R3 of histone H4 in vitro.

Characterization of atprmt10 mutants
To study further the in vivo functions of AtPRMT10, we identified
atprmt10-1, atprmt10-2 and atprmt10-3 mutants, which contain
transferred DNA insertions in exon 5, intron 3 or exon 1,
respectively (Fig 3A). Full-length AtPRMT10 messenger RNA was
not detected in any of the three mutant alleles (Fig 3B); the
AtPRMT10 antibody detected a single band of 42 kDa in wild type,
which was absent in all three atprmt10 mutants (Fig 3C). Therefore,
atprmt10-1, atprmt10-2 and atprmt10-3 seem to be null alleles.

The atprmt10-1, atprmt10-2 and atprmt10-3 homozygous
mutants showed delayed flowering time with increased total leaf
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number when grown under long-day conditions (Fig 3D; data not
shown). The late-flowering phenotype of both atprmt10-1 and
atprmt10-2 mutants was complemented by the transformation of
AtPRMT10 genomic DNA (Fig 3E). The flowering time of these
complemented transgenic plants tended to correlate reversely
with the level of AtPRMT10 (Fig 3F). Hence, we conclude that
asymmetrical dimethylation of arginine residues mediated by
AtPRMT10 is required for the promotion of flowering in
Arabidopsis under long-day conditions.

Molecular genetic analysis has indicated that the photoperiod,
gibberellin, vernalization and autonomous pathways are four
main pathways that regulate flowering time in Arabidopsis
(Blazquez et al, 1998; Henderson & Dean, 2004; Searle &
Coupland, 2004; Amasino, 2005; Dennis et al, 2006). Here, we
show that the late-flowering phenotype of atprmt10 mutants
phenocopies mutants in the autonomous pathway (Fig 4A), as
atprmt10 mutants flowered later than wild-type plants under both
long- and short-day conditions. Vernalization and gibberellin
treatments rescued the late-flowering phenotype of atprmt10
mutants, and the flowering time of flc-3 FLOWERING LOCUS C
atprmt10 double mutants was similar to that of flc-3 plants
(Fig 4B). Consistent with our genetic observations, we detected
elevated levels of FLC transcripts and decreased expression of
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1)
transcripts (a floral pathway integrator, repressed by FLC) in
atprmt10 mutants (Fig 4C). Therefore, we conclude that
AtPRMT10 is a new component in the autonomous pathway,
which controls the floral transition in an FLC-dependent manner.

FLC chromatin has been shown to be regulated by histone
acetylation and lysine methylation (He & Amasino, 2005).
To investigate whether arginine methylation might also be
involved in modifying chromatin of the FLC locus, chromatin

immunoprecipitations (ChIPs) were carried out using antibodies
against H4R3me2a, trimethylated H3K4 (H3K4me3), dimethyl-
ated H3K4 (H3K4me2) and acetylated H3 (H3ac). However, no
significant differences were found between atprmt10 mutants and
wild-type Col (supplementary Fig S3A,B online). In addition, four
control assays worked well, indicating that the ChIP assays were
carried out correctly (supplementary Fig S3C–E online).

Histone modifications are believed to be a conserved
mechanism in regulating chromatin dynamics in eukaryotic
organisms. In mammals, methylation of histone H4R3 by PRMT1
has been shown to be important in transcriptional activation by
facilitating histone H4 acetylation (Wang et al, 2001). Therefore,
asymmetrical H4R3 dimethylation in plants might also promote
transcription. If AtPRMT10 modifies FLC chromatin directly, it
might be expected to reduce FLC expression in atprmt10 mutants.
However, loss-of-function mutations in AtPRMT10 showed
elevated levels of FLC mRNA. Together with ChIP results we
conclude that AtPRMT10 might be an indirect modulator of FLC
by activating other repressors of FLC.

To test this, we evaluated the transcript levels of genes
in the autonomous pathway, including those involved in RNA
processing (FCA, FY, FLOWERING LOCUS K (FLK), FPA) (Simpson
et al, 2004) and transcription regulation (FVE, FLD, RELATIVE OF
EARLY FLOWERING 6 (REF6) and LUMINIDEPENDENS (LD))
(Lee et al, 1994; He et al, 2003; Ausin et al, 2004; Noh et al,
2004), by using real-time PCR. However, all tested genes
showed no marked differences in mRNA levels between atprmt10
mutants and wild-type Col (supplementary Fig S4 online).
This raised the possibility that AtPRMT10 might regulate an
as yet unidentified FLC repressor, or that AtPRMT10 might
function at post-transcriptional or post-translational levels in
controlling flowering time.
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As AtPRMT5 was shown to promote flowering time in an FLC-
dependent manner (Pei et al, 2007; Wang et al, 2007), we wanted to
know whether there is some genetic interaction between AtPRMT10
and AtPRMT5 genes in repressing FLC. Under long-day conditions,
the atprmt5 atprmt10 double mutant showed additive effects on
flowering time and FLC mRNA levels as compared with either single
mutant, indicating that AtPRMT5 and AtPRMT10 might act in a
genetically parallel manner (Fig 4D; supplementary Fig S5 online).
In addition, real-time PCR and northern blot analysis showed that
the double mutant expressed lower levels of FLC mRNA than the
autonomous pathway mutants tested (Fig 4D). These indicate that
the two genes are weaker suppressors compared with the classic
autonomous pathway mutants and the minor effects also indicate
further redundancies in the repression of FLC.

In mammals, proteomic analysis identified more than 200
putative arginine-methylated proteins, many of which are hetero-
geneous nuclear ribonucleoproteins acting in RNA processing
(Boisvert et al, 2003). For example, sam68, a K homology domain
RNA-binding protein, was an in vivo substrate of PRMT1 and

relocalized to the cytoplasm when methylation was blocked
(Cote et al, 2003). Therefore, besides histones, AtPRMT10 might
also act on many other cellular proteins to modulate their
functions. It will be of interest to dissect deeper molecular
mechanisms of AtPRMT10 in flowering time regulation.

METHODS
Purification of the histone H4 methyltransferase. Fresh cauli-
flower head was purchased from the local market. The 3–7 mm
surface layer mainly composed of inflorescence and floral
meristem was collected. The purification procedure is detailed
in the supplementary information online.
Histone methyltransferase assay. Column fractions or recombi-
nant enzyme was incubated with appropriate substrates and
[3H]SAM as described previously (Wang et al, 2001). The reaction
mixture was separated by SDS–PAGE and stained with Coomassie
blue. The gel was then treated with Amplifier (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden), dried and exposed to Kodak
Biomax MS film at �80 1C for the appropriate time.
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Antibodies. Antibodies used in this study are as follows: tubulin
(Sigma-Aldrich, St Louis, MO, USA); horseradish peroxidase-
conjugated secondary antibodies (Pierce Biotechnology Inc,
Rockford, IL, USA); CRY1 (a gift from C. Lin). The mouse
polyclonal antibody against AtPRMT10 was raised using recom-
binant GST-AtPRMT10 fusion protein. The antiserum was affinity
purified before use.
Thin-layer chromatography analysis. In vitro histone methylation
reactions were carried out with [3H]SAM (GE Healthcare Bio-
Sciences AB), histone H4 calf thymus (Roche Diagnostics GmbH,
Mannheim, Germany) and the appropriate enzymes. Sample
preparation and TLC analysis were carried out as reported
previously (Pei et al, 2007).
Plant materials. atprmt10-1 (SALK_047046), atprmt10-2
(SALK_024289), atprmt10-3 (SALK_049430), fy-5 (SALK_053604)
and fpa-9 (SALK_011615) were isolated from the Salzburger
Landeskliniken Collection (http://signal.salk.edu/). The flk-1 seeds
were a gift from C. Lin. The primers used for genotyping are listed
in the supplementary information online.
Complementation assay. The complement fragment of
AtPRMT10, including 1,157 bp before ATG, the coding region,
and 530 bp after TGA, the stop codon, was ligated into
pCAMBIA1300 vector. This construct was then transformed into
Agrobacterium strain AGLO and transformed into Arabidopsis
through floral dipping.
Flowering time assessment. Plant growth conditions are listed in
the supplementary information online. Mutants and control plants
were directly grown in soil side by side in Versatile Environmental
Test Chamber (MLR-350H, SANYO). Flowering time was assessed
by counting the number of rosette and cauline leaves after they
had flowered. At least 15 plants were counted for each line.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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