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Highlights
New methods are enabling compre-
hensive transcriptome-wide poly(A) tail
analysis.

Cytoplasmic dynamics involving the
deadenylation and polyadenylation of
poly(A) tails regulate gene expression.

Non-A residues are prevalent in the 3′
ends and the internal body of poly
(A) tails, where they may play crucial
roles in RNA regulation.
The poly(A) tail is an essential structural component of mRNA required for the lat-
ter’s stability and translation. Recent technologies have enabled transcriptome-
wide profiling of the length and composition of poly(A) tails, shedding light on
their overlooked regulatory capacities. Notably, poly(A) tails contain not only ad-
enine but also uracil, cytosine, and guanine residues. These findings strongly
suggest that poly(A) tails could encode a wealth of regulatory information, similar
to known reversible RNA chemical modifications. This review aims to succinctly
summarize our current knowledge on the composition, dynamics, and regulatory
functions of RNA poly(A) tails. Given their capacity to carry rich regulatory infor-
mation beyond the genetic code, we propose the concept of ‘poly(A) tail epige-
netic information’ as a new layer of RNA epigenetic regulation.
Poly(A) tails potentially encode vital epi-
genetic regulatory information.
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Epigenetic regulation of gene expression
In eukaryotic organisms, genetic information is encoded within DNA sequences. However, addi-
tional information beyond the DNA sequence controls gene expression, driving diverse biological
processes. The term ‘epigenetics’ historically referred to phenomena not explainable solely by ge-
netic principles [1]. As our understanding of chromatin-mediated gene regulation has advanced,
the definition of epigenetics has evolved. It now encompasses the study of molecules and mech-
anisms that maintain alternative gene activity states in the context of the same DNA sequences.
This includes DNA methylation, histone modifications, the incorporation of histone variants, and
the structure of chromatin itself [1,2]. In recent advancements, RNA has emerged as a carrier of an-
other layer of epigenetic information, called RNA epigenetics (see Glossary), including small
RNAs and chromatin-associated non-coding RNAs (ncRNAs) which impact gene expression, as
well as RNA editing and RNA chemical modifications (epitranscriptomics) which affect the
RNA itself [3–6]. The major types of well-accepted RNA epigenetics are summarized in Table 1
[7–12], and they are not discussed further due to space limitations. The essential point is that
these epigenetic regulations do not involve changes to the underlying DNA sequence.

Poly(A) tails – long chains of adenine nucleotides attached to the 3′ end of most eukaryotic mes-
senger RNA (mRNA) molecules – represent a fundamental aspect of mRNA architecture. This re-
view aims to concisely summarize our current knowledge on the composition, dynamics, and
regulatory roles of RNA poly(A) tails, which underscore the crucial role of poly(A) tails, appended
to mRNA without a DNA template, in encoding essential regulatory information; this represents a
new layer of RNA-based epigenetic regulation, herein referred to as poly(A) tail epigenetic in-
formation. Understanding poly(A) tail epigenetic information will uncover key biological mecha-
nisms and advance mRNA biotechnology development.

RNA poly(A) tails
Traditionally, poly(A) tails are considered to be long chains of adenine nucleotides with initial
lengths of approximately 70–80 nt in yeast and 200–250 nt in mammalian cells [13,14]. Given
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Glossary
Alternative polyadenylation (APA): a
mechanism of gene regulation that
allows the production of mRNA isoforms
through different polyadenylation sites in
the pre-mRNA, resulting in mRNA
isoforms with different 3′ untranslated
regions from a single gene.
Epitranscriptomics: the study of
transcriptome-wide RNA epigenetics.
Often it refers to the study of the
transcriptome-wide chemical
modifications of RNA molecules.
Mixed tailing: in the context of RNA
biology, mixed tailing refers to the
incorporation of non-adenine
nucleotides (such as cytosine, guanine,
uracil) into the RNA poly(A) tails in a non-
templated manner.
Oocyte-to-embryo transition: the
period of development from oocyte
maturation and early embryo
development to zygotic genome
activation. During this period, the
developmental control shifts from
maternal control to zygotic control.
Poly(A) tail epigenetic information: the
regulatory information encoded in the poly
(A) tails that is added in a non-templated
manner. It includes the length of the poly
(A) tail, as well as the type, number, and
position of the non-A residues within it. It
might also include the chemical
modifications within the poly(A) tails.
RNA epigenetics: the study of changes
in gene expression that do not alter the
DNA sequence but are mediated through
RNA molecules. This includes chemical
modifications on RNA, editing of RNA, as
well as regulatory RNA that influence gene
expression, such as small RNAs and
chromatin associated non-coding RNAs.
Zygotic genome activation (ZGA): the
process in early embryonic development
during which the embryonic genome
becomes transcriptionally active.
their ubiquitous presence in most eukaryotic mRNAs, the poly(A) tail is considered an essential
structural component of mRNA required for its life cycle, including stability, translation, and nu-
clear export [13]. Additionally, poly(A) tails are not exclusive to mRNAs but are also found on
many long non-coding RNAs (lncRNAs) [15,16] where they contribute to nuclear export and sta-
bility, paralleling their functions in mRNA [17]. Exploring whether poly(A) tails play additional roles
in lncRNA metabolism and function represents an interesting future direction.

In mammals, the addition of a poly(A) tail to a pre-mRNA involves two main steps: cleavage by the
cleavage and polyadenylation specificity factor (CPSF) complex and polyadenylation by poly
(A) polymerase (PAP) (Figure 1). The CPSF complex recognizes and binds to a specific sequence
motif called polyadenylation signal (PAS), usually AAUAAA, near the 3′ end of the pre-mRNA. The
CPSF complex, together with other protein factors, forms a large cleavage complex that cleaves
the pre-mRNA downstream of the PAS [18]. PAP then adds a poly(A) tail, typically 200–250 nt
long, without needing a template [19]. The poly(A) tails can then be bound by a group of poly
(A) binding proteins (PABPs) [20]. The steady-state length of mRNA poly(A) tails is commonly seen
in the range of 20–100 nt, which therefore is unlikely to be determined at the time of synthesis by
PAPs, but rather determined by trimming through deadenylation activity after exporting to the cyto-
plasm; trimming involves PAN2–PAN3 and CCR4–NOT complexes [13,14] (Figure 1). In addition to
transcription-coupled polyadenylation in the nucleus, mRNAs can undergo polyadenylation exten-
sion or modification through a group of non-canonical PAPs (ncPAPs) called terminal
nucleotidyltransferases (TENTs) (Figures 1 and 2). There are 11 TENTs in the human genome. Sev-
eral of them have been implicated in cytoplasmic poly(A) tail remodeling [21], while the others repre-
sent emerging themes to be explored. Due to length constraints, beside brief touches on the TENTs,
this review directs readers to more extensive discussions in recent reviews on this topic [21].

Methods of poly(A) tail sequencing and composition of poly(A) tails
Recent technical advancements have enabled the transcriptome-wide investigation of RNA poly
(A) tails [22]. Next-generation sequencing (NGS) has made transcriptome sequencing a powerful
tool for dissecting gene expression at single-cell resolution. However, sequencing poly(A) tails pre-
sents significant challenges due to their homopolymeric nature, which imposes problems for both
Sanger and NGS technologies [23]. Therefore, poly(A) tails are normally discarded during the library
preparation, sequencing, or data analysis phases of standard RNA sequencing (RNA-seq) methods.

For transcriptome-wide poly(A) tail analysis, several methods have been developed on the Illumina
platform using customized sequencing recipes, base-calling algorithms, or data analysismethods, in-
cluding TAIL-seq [23], mTAIL-seq [24], PAL-seq [25], PAL-seq-v2 [26,27], PAL-seq-v3 [28], PAL-
seq-v4 [28], PAT-seq [29], TED-seq [30], and poly(A)-seq [31] (Table 2). Among these methods,
TAIL-seq, mTAIL-seq, and various versions of PAL-seq output relatively good measurements of
Table 1. Well-accepted RNA epigenetics implicated in regulation of gene expression

RNA epigenetics Major types Short description of the function Reviews for
in-depth reading

Small RNAs miRNA, piRNA, siRNA, snRNA Target degradation, translational repression, transcriptional regulation Chen and Rechavi [11]

Non-coding RNAs lncRNAs, eRNAs, circRNAs Transcriptional and post-transcriptional control of gene expression
Li and Fu [10]
Yang, L. et al. [12]

RNA editing A to I, C to U, U to C
Alters the nucleotide sequence of RNA molecules which might lead
to protein-coding substitution; involved in innate immunity

Eisenberg and
Levanon [9]

RNA chemical
modifications

m6A, m1A, m7G, m5C, hm5C,
ac4C, Ψ…

Change the structures and biochemical properties of RNA which
leads to subsequent impact of mRNA stability and translation

Roundtree et al. [8]
Delaunay et al. [7]
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Figure 1. Overview of mRNA poly(A) tail metabolism. Pre-mRNAs are transcribed by RNA polymerase II (Pol II) and
undergo co-transcriptional processing where the poly(A) tails are synthesized. This involves recognition of the
polyadenylation signal (PAS) by the cleavage and polyadenylation specificity factor (CPSF), followed by cleavage and
polyadenylation by canonical poly(A) polymerases (PAPs). In the nucleus, poly(A) tails are bound by nuclear poly(A)-binding
protein (PABPN), preparing mRNAs for export to the cytoplasm. Once in the cytoplasm, poly(A) tails undergo trimming by
the PAN2–PAN3 and CCR4–NOT complexes. Cytoplasmic poly(A)-binding protein (PABPC) binds the poly(A) tails,
enabling mRNA translation by the 80S ribosomes. Further metabolism of mRNA poly(A) tails in the cytoplasm includes
both degradation and remodeling. Abbreviation: TENTs, terminal nucleotidyltransferases.
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poly(A) tails. PAL-seq utilizes biotin-conjugated dUTP to fluorescently quantify the relative amount of U
incorporated at poly(A) tail sites, providing an estimate of poly(A) tail length [25]. By contrast, TAIL-seq,
mTAIL-seq, PAL-seq-v2, PAL-seq-v3, and PAL-seq-v4 leverage customized base-calling algorithms
to parse raw images from Illumina sequencers, enabling quantification of the number of A nucleotides
[23,24,26–28]. Interestingly, TAIL-seq identifies non-adenine residues (U, C, G) at or near the 3′ ends
of poly(A) tails [23], while mTAIL-seq, PAL-seq-v2, PAL-seq-v3, and PAL-seq-v4 allow for the identi-
fication of 3′ end U residues [24,26–28].

The third-generation sequencing technologies, PacBio and Nanopore platforms, exhibit reduced
sensitivity to long homopolymeric sequences, making them exceptionally suitable for accurate
poly(A) tail sequencing. For example, PacBio sequencing in HiFi mode excels in accurately
848 Trends in Biochemical Sciences, October 2024, Vol. 49, No. 10
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Figure 2. Cytoplasmic poly(A) tail remodeling and poly(A) tail epigenetic regulation. (A) Cytoplasmic
polyadenylation by terminal nucleotidyltransferase 2 (TENT2) and TENT5. mRNAs that contain both a cytoplasmic
polyadenylation element (CPE) and a polyadenylation signal (PAS) are recognized by the cleavage and polyadenylation
specificity factor (CPSF) and the CPE-binding protein (CPEB), which recruits TENT2 to catalyze the extension of poly(A)
tails. This process enhances mRNA stability or facilitates translational activation. Similarly, TENT5 can also target mRNAs
for cytoplasmic polyadenylation, contributing to the stabilization or activation of these transcripts. (B) TENT4A/B catalyzes
mixed tailing, incorporating non-A residues, particularly G residues, into poly(A) tails. These non-A residues, such as G,
inhibit the deadenylation activity of the CCR4–NOT complex, thereby contributing to the stabilization and activation of the
transcripts. (C) Terminal uridylyltransferase 4 (TUT4) and TUT7 catalyze the addition of U residues at the 3′ ends of poly(A)
tails that are shorter than 25 nucleotides or fully deadenylated. The notation ‘n’ represents the number of adenine (A)
residues. These 3′ uridylated transcripts are subject to either 3′-to-5′ degradation by DIS3L2 and the exosome or 5’-to-3′
degradation by the LSM1-7 complex and exonuclease 1 (XRN1).
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measuring homopolymeric poly(A) tail sequences by repeatedly sequencing a single molecule to
derive a consensus sequence [32–34]. Methods such as PAIso-seq [35–37], PAIso-seq2 [38],
FLAM-seq [39], FLEP-seq [40], and FLEP-seq2 [41] on the PacBio HiFi platform have proved ef-
fective in sequencing poly(A) tails (Table 2). Notably, their accuracy facilitates the detection of non-
A residues within the body of poly(A) tails [37–39], highlighting a complexity beyond mere
stretches of A nucleotides. The Nanopore platform has the advantage of directly sequencing
mRNA molecules (direct RNA sequencing, DRS) [42–46], as well as sequencing complementary
DNA (cDNA) libraries that include the entire poly(A) sequence as evidenced by FLEP-seq, FLEP-
seq2, and Nano3P-seq applications [40,41,47] (Table 2). Interestingly, Nanopore sequencing
also uncovers non-A residues within the poly(A) tails through both cDNA sequencing [47] and
DRS utilizing a neural network-based poly(A) tail non-A base-calling tool, Ninetails (https://
github.com/LRB-IIMCB/ninetails). Unlike reverse transcription-based methods, DRS analyzes
native RNA molecules and has the potential to detect chemical modifications in them. It is note-
worthy that while PAIso-seq, PAIso-seq2, and FLAM-seq libraries may also be sequenced on
Nanopore platforms at a lower sequencing cost, the accuracy in measuring internal non-A resi-
dues might not match that of the PacBio HiFi platform.
Trends in Biochemical Sciences, October 2024, Vol. 49, No. 10 849
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Table 2. Methods for transcriptome-wide poly(A) tail sequencing

Methods Platform Minimal input rRNA removal Tail
preserving
principle

Full-length
isoform

Length 3′-End
non-A
residues

Internal
non-A
residues

Refs

TAIL-seq Illumina 50 μg total RNA rRNA depletion by
Ribo-Zero

3′ Adaptor
ligation

No 231 nt Yes Very
close to
3′ end

Chang et
al. [23]

mTAIL-seq Illumina 1 μg total RNA – 3′ Splinted
ligation

No 231 nt 3′-end U No Lim et al.
[24]

PAL-seq Illumina
GA II

1 μg total RNA – 3′ Splinted
ligation

No 300 nt No No Subtelny
et al. [25]

PAL-seq V2 Illumina 25 μg total RNA – 3′ Splinted
ligation

No 250 nt 3′ end U No Eisen et
al. [26]

PAL-seq V3 Illumina 500 ng total
RNA

– 3′ Splinted
ligation

No 250 nt 3′ end U No Xiang and
Bartel [28]

PAL-seq V4 Illumina 500 ng total
RNA

– 3′ Splinted
ligation

No 250 nt 3′ end U No Xiang and
Bartel [28]

PAT-seq Illumina 1 μg total RNA – Templated end
extension

No 80 nt Yes Very
close to
3′ end

Harrison
et al. [29]

TED-seq Illumina N.A. Poly(A)+ selection
by oligo(dT)
Dynabead

3′ Adaptor
ligation

No 300 nt No No Woo et al.
[30]

Poly(A)-seq Illumina 5.1 μg total RNA Poly(A)+ selection
by oligo(dT)

3′ Adaptor
ligation

No 300 nt Yes Short
tails

Yu, F. et
al. [31]

FLAM-seq PacBio
HiFi

500 ng total
RNA

Poly(A)+ selection
by oligo(dT)

GI tailing Yes No
limitation

No Yes Legnini et
al. [39]

FLEP-seq Oxford
Nanopore
or PacBio
HiFi

3 μg total RNA rRNA depletion by
RiboMinus Plant
or riboPOOLs

3′ Adapter
ligation

Yes No
limitation

Yes Yes Long et al.
[40]

FLEP-seq2 Oxford
Nanopore
or PacBio
HiFi

500 ng total
RNA

rRNA depletion by
riboPOOLs

3′ Adapter
ligation

Yes No
limitation

Yes Yes Jia et al.
[41]

PAIso-seq PacBio
HiFi

0.5 ng total RNA – Templated end
extension

Yes No
limitation

No Yes Liu et al.
[37]

PAIso-seq2 PacBio
HiFi

100 ng total
RNA

rRNA depletion or
Cas9-guided
digestion of rDNA

3′ Adaptor
ligation

Yes No
limitation

Yes Yes Liu et al.
[38]

Nano3P-seq Oxford
Nanopore

50 ng total RNA rRNA depletion by
riboPOOLs

3′ Template
switch

Yes No
limitation

Yes Yes Begik et
al. [47]

Direct RNA
sequencing

Oxford
Nanopore

100 ng poly(A)+
RNA

Poly(A)+ selection
by oligo(dT)

3′ splinted
ligation

Yes No
limitation

No for
standard
DRS

No for
standard
DRS

Krawczyk
et al. [46]
Garalde et
al. [42]
Parker et
al. [43]
Workman
et al. [44]
Roach et
al. [45]
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As methods on third-generation platforms can sequence full-length cDNA isoforms together with
the poly(A) tails, these methods provide opportunities to investigate the interplay between poly
(A) tail length, non-A residues within poly(A) tails, alternative polyadenylation (APA), alternative
splicing, and possibly RNA chemical modifications. These technologies offer powerful tools
for delving into the dynamic regulation and functionality of RNA poly(A) tails across a variety of
biological processes.

Poly(A) tail length-mediated gene expression regulation
The regulatory function of poly(A) tails in gene expression has been characterized from the studies
of dynamic poly(A) tail length, which influences both the stability and the translation of mRNAmol-
ecules. This regulation occurs through mechanisms such as deadenylation and cytoplasmic
polyadenylation.

Deadenylation precedes decapping in 5′-to-3′ RNA decay, and it also takes place prior to
exosome in the 3′-to-5′ RNA decay [13,26,48,49]. Therefore, deadenylation effectively signals
that an mRNA is destined for degradation, positioning deadenylation as a crucial mechanism
for downregulating gene expression [13,50]. For example, active deadenylation mediated by
the CCR4–NOT complex is crucial for clearing mRNAs associated with the naïve pluripotent reg-
ulatory network during the exit of naïve pluripotency [51]. The PAN2–PAN3 and CCR4–NOT
complexes are primarily responsible for deadenylation [50]. It is generally understood that
PAN2–PAN3 targets long poly(A) tails, with minimal effect on the transcriptome, whereas the
CCR4–NOT complex is responsible for the degradation of a majority of the poly(A) tails
[50,52,53]. Interestingly, not all mRNAs subjected to deadenylation are destined for immediate
degradation; some are stably preserved within the cytoplasm. These transcripts can later be
reactivated for translation through cytoplasmic polyadenylation or other types of poly(A) tail re-
modeling mediated mainly by TENTs [21,54,55] (Figure 2A,B). This dual role of deadenylation un-
derscores its significance in both mRNA turnover and the dynamic regulation of gene expression.

Cytoplasmic polyadenylation has been extensively explored in various biological contexts such as
oocyte-to-embryo transition, inflammation, synaptic activity, and processes underlying learning
andmemory [13,56–59]. This process facilitates the rapid synthesis of proteins in specific spatial or
temporal patterns in response to external or internal cues. For example, duringmammalian oocyte-
to-embryo transition, global mRNA poly(A) tail deadenylation takes place during oocyte maturation
[60–65], while select mRNAs undergo polyadenylation to increase the lengths of their poly(A) tails
[58,65–69]. The cytoplasmic polyadenylation is crucial for the production of factors important for
reproduction, such as CCNB1, a cyclin critical for meiosis [70,71], and BTG4, CNOT6L, and
CNOT7, components of the CCR4–NOT deadenylase complex [61,62,64]. The translational acti-
vation during oocyte maturation is driven primarily by cytoplasmic polyadenylation element (CPE,
mostly the UUUUA element)-dependent cytoplasmic polyadenylation [57–59,66,68,69,72].

In the global view, the changes in poly(A) tail lengths during oocyte maturation are highly associ-
ated with mRNA translational efficiency, with longer poly(A) tails generally promoting more effec-
tive translation [58,65,66,73]. This phenomenon is a conserved mechanism across various
species, including mammals, fish, frogs, and flies [24,25,28,73]. However, this positive associa-
tion does not extend to somatic cell lines, indicating a cell type specificity for such a link [28,74].
Dysfunctions in poly(A) tail-mediated regulation during the oocyte-to-embryo transition leads to
compromised or unsuccessful reproduction [58,60–62,64,75]. For comprehensive knowledge
about cytoplasmic polyadenylation and deadenylation-mediated gene expression regulation, in-
cluding detailed discussions on biochemical mechanisms and biological functions, readers are
encouraged to consult focused reviews [13,56].
Trends in Biochemical Sciences, October 2024, Vol. 49, No. 10 851
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The regulation of gene expression through poly(A) tail length involves not only factors that en-
hance deadenylation or polyadenylation activity, but also regulators that inhibit the CCR4–NOT
complex [76], or possibly TENTs, thereby fine-tuning poly(A) tail length. Such precise control of
gene expression allows for timely protein synthesis, which is essential for development and the
cellular response to environmental changes. Future research, empowered by advanced se-
quencing technologies, will advance our insights into the complex dynamics of poly(A) tail lengths
in cellular physiology and disease mechanisms.

Non-A residues within poly(A) tails encode potential epigenetic information
Recent advancements in sequencing technologies – including TAIL-seq, PAIso-seq, PAIso-seq2,
and FLAM-seq – have revealed the presence of non-adenine residues both at the 3′ ends and
within the bodies of poly(A) tails [23,37–39,47]. These findings challenge the long-standing
knowledge of the poly(A) tail as merely a sequence of adenine nucleotides at the mRNA’s 3′
end. The discovery of non-adenine residues, combined with the variability in poly(A) tail length, in-
troduces a potential complex layer of post-transcriptional regulation. This complexity, reflected in
the diversity, abundance, and distribution of the non-A residues, represents a significant
encoding capacity with the potential to code for significant RNA regulatory information beyond
the genetic information inscribed within genomic DNA. We suggest conceptualizing this capacity
as ‘poly(A) tail epigenetic information’, representing a new layer in our understanding of gene ex-
pression regulation. We hope that the evidence presented in the following sections will help sub-
stantiate the concept’s validity for our readers.

Non-A residues at the 3′ ends of poly(A) tails
In somatic cells, U residues frequently appear at the 3′ ends of poly(A) tails. Around half of all
mRNA species have more than 5% of their poly(A) tails with U residues at 3′ ends [23]. The 3′
end uridylation predominantly occurs in mRNA transcripts with very short poly(A) tails (typically
less than approximately 25 nt) [23,77,78], suggesting a link with the process of deadenylation. In-
deed, the rate of 3′ end uridylation negatively associates with mRNA half-lives [23]. Mechanisti-
cally, mRNA targeted for degradation is first deadenylated to fewer than 25 nt, followed by loss
of PABP binding and subsequent 3′ end uridylation, catalyzed by terminal uridylyl transferases
4/7 (TUT4/7), two non-canonical poly(A) polymerases (ncPAPs) [79] (Figure 2C). mRNAs with
uridylated poly(A) tails can then be degraded by the exonucleases in both the 5′-to-3′ and 3′-
to-5′ directions [79]. This mechanism has proved crucial for degrading unnecessary transcripts
during mammalian oocyte growth [80,81]. Importantly, impaired uridylation-mediated mRNA
degradation results in defective germinal vesicle (GV) oocytes, which are subsequently unable
to complete the reproductive process [80,81]. In addition, this process is also observed in plants,
where it facilitates degradation of mRNAs or cleaved mRNA fragments [82,83].

Therefore, 3′ end U residues are added by TUT4/7 to serve as mRNA regulatory information,
marking the mRNA for subsequent degradation. DIS3L2 and LSM1-7 are potential readers of
these marks, recognizing and acting upon the uridylated tail [79] (Figure 2C). Furthermore, this
regulatory mechanism might be conserved beyond mammals, with 3′ end U residues also
found in Arabidopsis thaliana and other eukaryotes, suggesting a broad biological relevance
[23,77,78,84]. These findings illustrate how 3′ end U residues of mRNA poly(A) tails encode epi-
genetic information, which can primarily be read as a mark for subsequent mRNA degradation.

By contrast with 3′ end U residues, 3′ end G residues are associated with longer poly(A) tails (>40
nt) [23]. In line with this observation, 3′ end guanylation rate is positively associated with mRNA
half-lives [23]. Mechanistically, G residues are incorporated into poly(A) tails in a mixed tailing
mechanism by TENT4A/B, another two ncPAPs [85] (Figure 2B). TENT4A/B catalyze the
852 Trends in Biochemical Sciences, October 2024, Vol. 49, No. 10
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incorporation of mostly A residues followed by G residues, as well as a smaller amount of C and
U residues [85]. The presence of a relatively high abundance of G residues at the 3′ ends of poly
(A) tails is likely the result of a deadenylation process that preferentially stops at the non-A resi-
dues, especially at G residues, which are poor substrates for the CCR4–NOT complex [85,86]
(Figure 2B). Experimental data support this, showing that G, C, and U residues effectively slow
down the deadenylation process in vitrowhen the fully reconstituted humanCCR4–NOT complex
is used [86]. This characteristic leads to deadenylation preferentially halting at non-A residues
during CCR4–NOT-mediated deadenylation, explaining the preferential seen of G residues at
the 3′ ends of steady-state poly(A) tails.

Therefore, G, C, and U residues introduced by mixed tailing into poly(A) tails serve as mRNA reg-
ulatory information, marking the mRNA for enhanced stability against active deadenylation. The
ability of the CCR4–NOT complex to differentiate between non-A and A residues highlights its
role as a potential reader of these marks within poly(A) tails [85,86]. TENT4A/B have demon-
strated a capacity for mixed tailing. Whether there are other ncPAPs capable of mixed tailing
into poly(A) tails remains an interesting question to be explored. These findings illustrate how G,
C, and U residues within poly(A) tails encodes epigenetic information, which can primarily be
read as marks for longer mRNA half-life.

Non-A residues within the body of poly(A) tails
In addition to regulating mRNA half-life, the frequency of G residues within poly(A) tails has been
shown to negatively impact PABP binding and translational efficiency in Arabidopsis thaliana [87].
However, the impact of these residues on translation in mammals presents a more complex pic-
ture. Studies using synthetic mRNAswith poly(A) tails containing non-A residues have shown that
C residues within poly(A) tails can increase target protein production, potentially by stabilizing
mRNA against CCR4–NOT-mediated deadenylation [88]. However, this effect was not observed
with G residues, despite their known role in protecting poly(A) tails from deadenylation. In the
reconstituted human CCR4–NOT-mediated deadenylation system, C residues have a more pro-
nounced negative effect than G or U residues [86]. This might partially explain the more obvious
effect of C residues over G residues in the poly(A) tails to increase protein production through in-
creased stability. Alternatively, non-A residues might have additional roles in regulating mRNA
translational efficiency. An independent study using synthetic poly(A) tails interspersed with
non-A residues has revealed that these can increase translational efficiency independently of
their effects on mRNA stability [89]. Therefore, the relationship between non-A residues within
poly(A) tails and their impact on mRNA translation remains unclear. It would also be intriguing
to determine whether this relationship varies across different cells, tissues, or species. This com-
plexity underscores the necessity for further investigation to fully decipher the epigenetic informa-
tion encoded by non-A residues within poly(A) tails, which may potentially mark the mRNA for
translational regulation in diverse biological contexts.

The physiological roles of non-A residues within poly(A) tails are just beginning to be uncovered,
thanks to recent advances in poly(A) tail sequencing technologies. Very high abundances of these
non-A residues have been observed in mammalian preimplantation embryos prior to zygotic ge-
nome activation (ZGA) and in matured oocytes [75,84,90,91] (Figure 3). For example, >50% of
poly(A) tails in human pre-ZGA embryos contain U residues within their bodies, and around 40%
of poly(A) tails in human matured oocytes at the metaphase II (MII) stage feature U residues at the
3′ ends [75]. The poly(A) tail dynamics during human oocyte-to-embryo transition indicate a dy-
namic regulation of poly(A) tails involving global deadenylation during oocyte maturation, followed
by uridylation in matured oocytes, and subsequent re-polyadenylation post-fertilization, that gen-
erates poly(A) tails with U residues in the internal parts of poly(A) tails [75] (Figure 3). In addition, a
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Figure 3. Poly(A) tail remodeling during human oocyte-to-embryo transition (OET). During the human OET,
maternal transcripts (green line) are gradually degraded with one wave during oocyte maturation and another wave during
zygotic genome activation (ZGA). ZGA (red line) initiates at the late four-cell (4C) stage. Non-A (U, C, and G) residues (blue
line) exhibit high dynamics, peaking between the one-cell (1C) and four-cell (4C) stages. During oocyte maturation – from
germinal vesicle (GV) to metaphase II (MII) stages – a global deadenylation occurs, while transcripts with proximal
cytoplasmic polyadenylation elements (CPEs) and a polyadenylation signal (PAS) undergo selective polyadenylation. The
first wave of 3′ uridylation occurs primarily at the MII stage on deadenylated tails, which are then repolyadenylated post-
fertilization (at 1C) to generate poly(A) tails with internal U residues.
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second wave of terminal incorporation of U residues is seen at the four-cell stage just before ZGA
[75]. Although the detailed molecular functions of this global poly(A) tail epigenetic information re-
modeling remain to be revealed, this remodeling is essential for reproduction, as blocking the re-
polyadenylation after fertilization essentially prevents the first cleavage of human zygotes [75].
Similar patterns of poly(A) tail-mediated maternal mRNA remodeling have been observed in
mice, rats, and pigs [84], suggesting a conserved mechanism across mammalian species that
is crucial for successful reproduction.

Non-A residues have also been found in high abundance at the 3′ ends of poly(A) tails in early em-
bryos of zebrafish and Xenopus laevis [47,78], as well as in the body of poly(A) tails in early em-
bryos of zebrafish [47], pointing to a similar poly(A) tail non-A residues dynamics in vertebrates
as that seen in mammals. A study focusing on selected genes in starfish oocytes and embryos
has revealed a process of deadenylation followed by uridylation and re-polyadenylation [92],
854 Trends in Biochemical Sciences, October 2024, Vol. 49, No. 10
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Outstanding questions
Many recent advances have been
made to enable the transcriptome-
wide sequencing of the homopoly-
meric poly(A) tails. How can analysis
of poly(A) tails be performed at the
high-throughput single-cell level?

Sequencing of poly(A) tails has
revealed that non-A residues are
found at the 3′ end of poly(A) tails and
within the body of poly(A) tails. While
non-A residues at the 3′ ends regulate
the stability of RNA transcripts, what
functions do non-A residues within
the body of poly(A) tails serve?

The mechanisms underlying poly(A) tail
regulation involving non-A residues is an
emerging theme to be explored. What
mechanisms are responsible for the in-
corporation of non-A residues into poly
(A) tails, and what is the specificity of ter-
minal nucleotidyltransferases (TENTs) in
this process? Are there enzymes other
than TENTs involved? Which factors
specifically recognize non-A residues
within poly(A) tails to read the encoded
epigenetic information, andwhatmecha-
nisms are involved in the removal of non-
A residues from poly(A) tails, effectively
erasing the epigenetic information?

The poly(A) tail-mediated post-
transcriptional regulation has been
recognized to be critical for oocyte
maturation and early embryo devel-
opment. As poly(A) tails are univer-
sal to most eukaryotic mRNAs,
what are the physiological roles of
mirroring the patterns observed in mammalian oocyte-to-embryo transition. This suggests that
the dynamics of poly(A) tail non-A residues in early embryosmay extend beyond vertebrates, rais-
ing the possibility that these highly dynamic changes in poly(A) tails around fertilization is a univer-
sal feature in metazoans and potentially in other eukaryotes.

Concluding remarks
We believe that this review has demonstrated the potential of poly(A) tails to encode essential epi-
genetic regulatory information. As a novel aspect of RNA-based epigenetic regulation, this field
deserves further exploration of the functions and mechanisms involved in writing, reading, and
erasing poly(A) tail epigenetic information (Figure 4). As an area burgeoning with possibilities,
poly(A) tail epigenetic information holds significant potential to provide profound insights into
the mechanisms of gene expression regulation across diverse biological systems.

The conserved dynamic remodeling of mRNA poly(A) tail epigenetic information during the
oocyte-to-embryo transition underscores the critical roles of non-A residues in regulating repro-
duction. However, the specific functions andmechanisms underlying these poly(A) tail non-A res-
idues in this crucial developmental process await discovery. Given that the final products of this
remodeling process, poly(A) tails enriched with non-A residues, can support mRNA translation,
it is plausible that this process generates unique poly(A) tails carrying distinct epigenetic informa-
tion that marks the mRNA to be translated at critical developmental stages. Moreover, these tails
might fulfill additional regulatory roles beyond merely influencing spatiotemporal mRNA stability or
translational activation. For example, beyond their established role in regulating mRNA stability, 3′
end U residues have been implicated in the repair of deadenylated mRNA ends in Arabidopsis
thaliana [83], suggesting a complex, multifaceted contribution to mRNA life cycle management.

The oocyte-to-embryo transition represents an excellent model for the study of the mechanism
underlying poly(A) tail epigenetic information, particularly since transcription is silent during
oocyte-to-embryo transition [93–95], and all changes to poly(A) tails result from remodeling the
poly(A) tail epigenetic information rather than poly(A) tails synthesis following new transcription.
We envision that this unique developmental context will allow for detailed exploration of themech-
anisms involved in writing, reading, and erasing poly(A) tail epigenetic information during early
development (Figure 4).
Reader
Writer Eraser

Functional outcome

Degradation
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Figure 4. A general model of poly(A) tail epigenetic regulation. Poly(A) tail epigenetic information is written into poly
(A) tails by writers. This epigenetic information is subsequently read by readers, which interpret it to execute specific
functional outcomes. Eventually, erasers can remove this epigenetic information, resulting in poly(A) tails devoid of such
marks or leading to transcript degradation.
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poly(A) tail epigenetic regulation in
other diverse development and dis-
eases processes?

Poly(A) tails are found not only on
mRNAs, but also on lncRNAs. What
roles do poly(A) tail epigenetic
modifications play in the regulation of
lncRNAs?
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Moreover, since poly(A) tails are ubiquitous across most mRNAs and lncRNAs in eukaryotes, and
poly(A) tail non-A residues are also observed in various tissues and cell types, we believe that poly
(A) tail epigenetic regulation extends beyond reproduction processes. It likely plays a significant
role in a wide range of biological and pathological processes wherever mRNAs and lncRNAs are
crucial. However, studying poly(A) tail epigenetic regulation outside of the oocyte-to-embryo transi-
tion is challenging, as it is difficult to distinguish between newly synthesized and remodeled poly
(A) tails. Developing tools andmethods to differentiate thesewill be essential for advancing our under-
standing of poly(A) tail epigenetic regulation (see Outstanding questions). Furthermore, the cell type
specificity of poly(A) tail-mediated epigenetic regulation calls the development of high-throughput,
transcriptome-wide poly(A) tail profiling methods at the single-cell level.

In recent years, mRNA technologies have become a major focus in the pharmaceutical industry
[96,97], highlighted by the tremendous success of mRNA vaccines against the global COVID-
19 pandemic [98,99]. Extensive efforts have focused on enhancing mRNA stability and transla-
tional efficiency, including better 5′ cap modifications, optimization of 5′ and 3′ UTRs, codon op-
timization, and the use of modified nucleosides [96]. Interestingly, the poly(A) tails are remodeled
after mRNA injection into tissues [46]. As discussed earlier, poly(A) tail epigenetic information
plays crucial roles in regulating mRNA stability and translational efficiency. The development of
technologies that leverage poly(A) tail epigenetic mechanisms or even unnatural branched syn-
thetic poly(A) tails [100] promises to promote mRNA vaccine and drug designs. These new tech-
nologies, distinct from current methods, can be seamlessly integrated into existing development
pipelines. Therefore, further exploration of poly(A) tail epigenetic information and remodeling
mechanisms holds immense potential to advance mRNA-based biotechnologies.

Ultimately, poly(A) tail epigenetic regulation represents a new layer of complexity in gene regula-
tion, highlighting the poly(A) tails beyond their traditional view as mere structural elements of
mRNAs and lncRNAs. Better understanding of these principles will not only reveal fundamental
biological mechanisms but also promote the development of novel mRNA-based vaccines and
therapeutic strategies, leveraging the power of poly(A) tail epigenetic information.
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