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Abstract 

Enhancer clusters, pivotal in mammalian de v elopment and diseases, can organiz e as enhancer networks to control cell identity and disease 
genes; ho w e v er, the underlying mechanism remains largely une xplored. Here, w e introduce eNet 2.0, a comprehensive tool for enhancer net- 
w orks analy sis during de v elopment and diseases based on single-cell chromatin accessibilit y dat a. eNet 2.0 e xtends our pre vious w ork eNet 
1.0 by adding network topology, comparison and dynamics analyses to its network construction function. We re v eal modularly organiz ed en- 
hancer networks, where inter-module interactions synergistically affect gene expression. Moreover, network alterations correlate with abnormal 
and dynamic gene expression in disease and de v elopment. eNet 2.0 is robust across diverse dat asets. To facilit ate application, we introduce 
eNetDB ( https://enetdb.huanglabxmu.com ), an enhancer net work dat abase leveraging extensive scA T AC-seq (single-cell assay for transposase- 
accessible chromatin sequencing) datasets from human and mouse tissues. Together, our work provides a powerful computational tool and 
re v eals that modularly organized enhancer networks contribute to gene expression robustness in mammalian development and diseases. 
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nhancers are non-coding DNA cis- regulatory elements that
erve a crucial role in enhancing the frequency of gene tran-
cription ( 1 ,2 ). Previous studies have revealed that enhancers
an form large clusters, also known as shadow enhancers, re-
undant enhancers, super-enhancers (SEs) or enhancer clus-
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valuable tool for investigating enhancer cluster organization
( 6 ). However, it has limited throughput and is not suitable for
large-scale studies ( 5 ,7–14 ). CRISPR screen overcame the lim-
itation of throughput ( 15 ,16 ), but it is currently constrained
to studying well-established enhancer clusters in specific cell
lines due to a lack of effective guidance for predicting crucial
enhancer clusters in cell fate and disease ( 17 ). Furthermore,
the implementation of Hi-C technology allows for the gener-
ation of genome contact maps through extensive examination
of all possible interactions. It has greatly enhanced our com-
prehension of the intricate three-dimensional organization of
the genome ( 18 ). Nevertheless, obtaining high-resolution Hi-
C data still poses experimental challenges. 

The advancement of single-cell technologies, such as single-
cell RNA sequencing (scRNA-seq) and single-cell assay for
transposase-accessible chromatin sequencing (scA T AC-seq),
along with their associated computational methods ( 19–23 ),
has facilitated a deeper comprehension of enhancer–gene reg-
ulation. Moreover, these technologies have opened up exciting
opportunities to explore the regulatory interplay among con-
stituent enhancers at the single-cell level ( 24 ). For example,
we recently developed an algorithm eNet to integrate single-
cell multi-omics profiles and build enhancer network, which
elucidates the enhancer regulatory relationship for each gene
( 25 ). We found that the complexity of enhancer networks
predicts cell identity and disease genes, validated by in vivo
CRISPR / Cas9-mediated enhancer knockout experiment ( 26 ).
However, the topological properties of enhancer networks, as
well as their regulatory roles during development and diseases,
remain largely unexplored. 

In this study, we upgrade eNet algorithm to a compre-
hensive enhancer network analysis tool, termed eNet 2.0,
which extends three modules for network topology, com-
parison and dynamics analysis. We applied eNet 2.0 on the
rich resource of the existing single-cell chromatin accessibil-
ity data and built eNetDB, a user-friendly database of en-
hancer networks across diverse human and mouse tissues. Re-
markably, our findings reveal the modular organization of
enhancer networks, which contributes to transcriptional ro-
bustness in mammalian development. Our network compar-
ison and dynamics analysis can pinpoint disease-specific and
stage-specific enhancer networks, showcasing superior perfor-
mance in identifying disease-related and cell identity genes
compared to eNet 1.0 and the existing models. Together, eNet
2.0 provides a valuable tool and resource for researchers to
gain deeper insights into the epigenetic mechanisms in gene
regulation during disease pathogenesis and development. 

Materials and methods 

Data collection 

All scA T AC-seq data and matched scRNA-seq data were col-
lected from various sources, including Gene Expression Om-
nibus ( https:// www.ncbi.nlm.nih.gov/ geo/ ), the Zenodo data
archive ( https:// zenodo.org/ ) and Genome Sequence Archive
( https:// ngdc.cncb.ac.cn/ gsa/ ), as listed in Supplementary 
Table S1 . 

Construction of enhancer networks using eNet 
analysis 

We followed the steps in eNet ( 25 ) to construct enhancer net-
works. First, we prepared the enhancer accessibility and gene
expression matrices from scA T AC-seq and scRNA-seq profiles 
(or gene activity as a proxy) as input for eNet. Second, we 
identified putative enhancer clusters that possibly control the 
target genes within a ±100 kb window, based on the Pearson 

correlation between gene expression and enhancer accessibil- 
ity in single-cell profiles. Third, we evaluated enhancer interac- 
tion by calculating chromatin co-accessibility through Cicero 

( 24 ). Enhancer pairs with significantly high co-accessibility 
were considered predicted enhancer interactions (PEIs). Fi- 
nally, for each gene, we built an enhancer network represent- 
ing how multiple enhancers interact with each other to regu- 
late gene expression. The enhancer networks were visualized 

using R package igraph (v.1.2.6). Among each enhancer net- 
work, enhancers are represented as nodes, and the PEIs be- 
tween enhancers are represented as edges. 

Module detection within enhancer networks 

We applied the Louvain algorithm ( 27 ) for module detec- 
tion using the ‘cluster_louvain’ function in the R package 
igraph (v1.2.6), which has been successfully utilized in Ci- 
cero for identifying cis- co-accessibility networks, clusters of 
co-accessible cis- elements ( 24 ). 

Defining network hub enhancers and module hub 

enhancers 

In defining network hub enhancers, we computed the degree 
for each enhancer and normalized the values by accounting 
for the total number of nodes in the network. Enhancers with 

frequent PEIs in the top 5000 (approximately the 10th quan- 
tile) were identified as network hub enhancers. Similarly, for 
module hub enhancers, our analysis focused on PEIs within 

modules. We defined 5000 module hub enhancers as those 
displaying a notable frequency of PEIs within their respective 
modules. 

State / stage-specific enhancer networks 

To facilitate network comparison and dynamics analysis, we 
constructed state / stage-specific enhancer networks in each 

dataset. First, we leveraged the enhancer accessibility and gene 
expression matrices as input for the eNet algorithm ( 25 ),
which identified shared enhancer clusters (Node) for each gene 
across all states or stages. Following this, state / stage-specific 
co-accessibility between enhancers (Edge) was computed us- 
ing state / stage-specific cells as input for Cicero, thereby en- 
abling the precise construction of state / stage-specific en- 
hancer networks. 

Identification of differential / dynamic modules 

during disease or development 

To systematically compare enhancer networks between dis- 
ease and healthy states and identify distinct modules, we drew 

inspiration from DiffCoEx ( 28 ), an algorithm designed to 

identify differentially co-expressed modules using transcrip- 
tomic data. The process involves four steps: 

• Step 1 

Build the adjacency matrix C 

[ n ] for each condition n as the 
co-accessibility for all pairs of enhancers ( i, j ): 

C 

[ n ] : c i j 
[ n ] = co - accessbility 

(
E i , E j 

)
. 

https://www.ncbi.nlm.nih.gov/geo/
https://zenodo.org/
https://ngdc.cncb.ac.cn/gsa/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
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In this step, co-accessibility was computed using Cicero
 24 ). 

• Step 2 

Compute the adjacency difference matrix. 
For two conditions: 

D : d i j = 

∣∣∣∣(c [ 2 ] i j 

)2 
−

(
c [ 1 ] i j 

)2 
∣∣∣∣ . 

For more than two conditions: 

 : d i j = 

√ √ √ √ 

∑ 

∣∣∣(c i j 
[ n ] 

)2 − (
c i j 

[ 0 ] 
)2 

∣∣∣
n 

, where c i j 
[ 0 ] = 

1 

n 

∑ 

n 

c i j .

In this matrix, high values of d ij indicate significant alter-
tions in the co-accessibility status between enhancer i and
nhancer j across distinct conditions. 

• Step 3 

Derive the topological overlap-based dissimilarity matrix T
rom the adjacency change matrix D : 

T : t i j = 1 −
∑ 

k ( d ik d k j ) + d i j 

min 

(∑ 

k d ik , 
∑ 

k d k j 
) + 1 − d i j 

. 

The utilization of the topological overlap measure to con-
truct a dissimilarity matrix enables the identification of en-
ancers that share common neighbors in the graph formed by
he differential co-accessibility network as defined by the ad-
acency matrix created in Step 2. In essence, a low value of
 ij (high similarity) implies that both enhancer i and enhancer j 
xhibit significant co-accessibility changes with the same large
roup of enhancers. 

• Step 4 

The dissimilarity matrix T was used as input for clustering,
nd modules were identified. Standard hierarchical clustering
ith average linkage was employed for the clustering process,

ollowed by module extraction from the resulting dendrogram
sing a fixed cut height of 0.99 by default. 

ccuracy assessment of enhancer networks 

o validate the enhancer networks constructed using eNet
.0, we performed a two-level systematic evaluation. First,
t the enhancer–gene interaction level, we assessed the accu-
acy of eNet 2.0 by calculating the percentage of enhancer–
ene pairs that overlapped with those from the widely rec-
gnized activity-by-contact (ABC) model ( 29 ), using uncorre-
ated enhancer–gene pairs within the same 200 kb distance
s control. We further categorized genes into hematopoiesis-
elated and other gene groups to specifically examine the accu-
acy of enhancer networks associated with typical genes. Sec-
nd, at the enhancer–enhancer interaction level, we employed
igh-resolution Hi-C data from the GM12878 and K562 cell
ines, obtained from ENCODE project, as the gold standards.
nhancer pairs were classified into three categories based on
icero scores: high ( > 0.2), middle (0–0.2) and low ( ≤0). We

hen calculated the percentage of enhancer pairs validated by
he Hi-C data within each category. 

F motif / binding similarity analysis 

e examined the transcription factor (TF) binding on en-
ancers using two approaches. The first one involved DNA se-
quence motif analysis using Signac (v1.1.1) ( 30 ), while the sec-
ond approach utilized ChIP-seq data for 361 hematopoiesis-
related TFs obtained from CistromeDB ( 31 ) (Figure 2 F and
Supplementary Figure S1 J). These two methods allowed us to
generate an enhancer-TF matrix, where values of 1 and 0 de-
noted TF binding and non-binding to respective enhancers,
respectively . Subsequently , we employed this enhancer-TF ma-
trix to assess similarity in TF binding by calculating the cosine
similarity between pairs of enhancers using the simil() func-
tion from the R package proxy (v0.4.25). 

Enrichment analysis of GWAS SNPs and FANTOM5 

enhancers 

The genome-wide association studies (GWAS) catalog SNPs
were downloaded through the UCSC Table Browser ( http:
// genome.ucsc.edu/ ). We curated a list of tissues-related
GWAS SNPs using a semi-automatic text mining method
( Supplementary Table S2 ). The enhancer RNA (eRNA) data
were retrieved from FANTOM5 project through https://
fantom.gsc.riken.jp/ 5/ data/ . The overlap between loci and
GWAS SNPs or FANTOM5 enhancers was performed us-
ing the findOverlaps() function from the R package IRanges
(v2.20.2). For enhancers in each group, the enrichment
score was calculated as the fold enrichment compared to
the genome background. The computing method was listed
as following: ( m / n ) / ( M / N ), where m and M represent the
number of SNPs or eRNA within the group and genome-
wide, respectively, and n and N represent the number of
loci within the group and genome-wide, respectively. The
genome-wide background is generated from a list of loci ob-
tained by randomly shuffling the list of all open chromatin
regions. 

Enrichment analysis of RIC-seq interactions 

We downloaded RIC-seq data in GM12878 cell line, which
identified enhancer–promoter connection using pairwise in-
teracting eRNAs and promoter-derived noncoding RNAs
( 32 ). For enhancers in each group, the enrichment score
was calculated as the fold enrichment compared to the
genome background. The computing method was listed
as following: ( m / n ) / ( M / N ), where m and M represent
the number of enhancers identified by RIC-seq that inter-
sected with enhancers in that particular group and genome-
wide, respectively, and n and N represent the number of
loci within the group and genome-wide, respectively. The
genome-wide background is generated from a list of loci ob-
tained by randomly shuffling the list of all open chromatin
regions. 

Synergistic effect analysis of enhancer pairs 

Identification of enhancer-associated eQTL 

To take advantage of expression quantitative trait locus
(eQTL) for simulating enhancer perturbations, we first fil-
tered gene-associated eQTL based on the significant variant–
gene associations downloaded from the GTEx portal ( https://
gtexportal.org/). Next, for each enhancer within the enhancer
network that regulates the corresponding gene, we kept
the eQTL overlapped with the given enhancer as enhancer-
associated eQTL. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
http://genome.ucsc.edu/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://fantom.gsc.riken.jp/5/data/
https://gtexportal.org/
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The interactive model to estimate synergistic effect of paired
enhancer eQTL on gene expression 

To examine the synergistic effects of enhancer variants on
gene expression in blood, stomach and sigmoid colon, we
obtained genotype data and corresponding RNA-seq data
from dbGAP (dbGaP Study Accession: phs000424.v8.p2) and
the GTEx portal ( https:// gtexportal.org/ ). Utilizing each pair
of enhancer-associated eQTL, we applied a linear regression
model to evaluate the synergistic effect of enhancer pairs on
gene expression levels through the following formula: 

 Exp ∼ β0 + β1 X 1 ∗ X 2 + β2 X 1 + β3 X 2 + 

∑ 

βi ∗ Covariates . 

X denotes the genotype of the enhancer-associated eQTL.
The selection of covariates was done following the method
instruction in the previous study ( 33 ). In order to address the
hidden batch effects and other technical and biological sources
of variance across the transcriptome in gene expression data,
we employed the probabilistic estimation of expression resid-
ual (PEER) method ( 34 ). This approach was utilized to es-
timate a suite of latent covariates that correspond to gene
expression levels for each tissue type. The determination of
the number of PEER factors was stratified across four distinct
sample size categories: tissues with fewer than 150 samples,
those with 150–249 samples, those with 250–349 samples
and those with 350 or more samples. The optimization pro-
cess, as detailed in a previous study ( 35 ), led to the selection
of 15, 30, 45 and 60 PEER factors for the respective sample
size bins. To mitigate the influence of population effects on
the identification of quantitative trait loci (QTLs), genotype
principal components (PCs) are conventionally incorporated
as covariates in QTL mapping studies. Following the method
instruction in the previous study ( 33 ), we included five PCs
that provide an effective balance, controlling for population
structure without unduly diminishing the discovery power in
tissues with smaller sample sizes. Furthermore, we included
covariates such as the whole genome sequencing (WGS) plat-
form (HiSeq 2000 or HiSeq X), the WGS library construction
protocol (PCR-based or PCR-free) and donor sex in our as-
sociation analyses. We deem these to be the minimal essential
set of covariates for most QTL mapping endeavors utilizing
GTEx data. The significance of the interaction term in the fit-
ted linear model, as indicated by the P value, was utilized to
determine the synergistic impact of a pair of eQTL from an
enhancer pair on gene expression levels. In the analysis of the
human blood and colon dataset, we employed a significance
threshold of P < 0.01 to determine synergistic variant pairs
(SVPs). However, the utilization of a P < 0.01 threshold for
the human stomach dataset led to a notably limited number of
synergistic enhancer pairs (SEPs) ( n < 100); hence, the thresh-
old for the stomach dataset was set at P < 0.05. To investi-
gate the synergistic effect at enhancer level, we defined SEPs
as those with at least one SVP. 

Comparison of synergistic and additive models 
In order to ensure that the synergistic model provides a more
accurate representation of the real data for the identified SVPs,
we simultaneously applied an additive model without the in-
teractive term: 

Y Exp ∼ β0 + β1 X 1 + β2 X 2 + 

∑ 

βi ∗ Covariates . 

Then, for both the synergistic and additive models, we com-
puted respective Akaike information criterion (AIC) scores.
A lower AIC score signifies a more optimal model that effec- 
tively captures the data while considering the balance between 

model complexity and goodness of fit. 

Validation of enhancer interactions in MYC 

enhancer network 

We utilized eNet 2.0 to construct the enhancer network for 
MYC, employing the experimentally validated seven MYC en- 
hancers (E1–E7) from a published study as nodes ( 17 ) and 

Cicero-predicted chromatin co-accessibility between these en- 
hancers as edges. Subsequently, we applied the Louvain al- 
gorithm to detect modules within the MYC enhancer net- 
work. Based on our previous findings, enhancers from differ- 
ent modules were predicted to interact synergistically to regu- 
late gene expression, while enhancers within the same module 
contribute additively (Figure 2 G–I). 

To validate the synergistic / additive enhancer interactions 
in MYC enhancer network, we downloaded the multiplexed 

CRISPRi perturbation data for MYC enhancers from the orig- 
inal study ( 17 ). We followed the methods described in the 
original study to calculate depletion scores for each sgRNA 

pair and interaction scores for each enhancer pair. In brief,
we downloaded the count matrices of sgRNA pairs at day 0 

(D0) and day 30 (D30), filtered pairs with at least 30 reads in 

D0 and added a pseudo-count of 10. Depletion scores of all 
sgRNA pairs were calculated as the log 2 enrichment scores in 

D30 versus D0, normalized by the mean and standard devia- 
tion of enrichment scores for control–control sgRNAs. 

Next, we followed a four-step strategy, as described in the 
original study ( 17 ), to calculate the interaction score for each 

enhancer pair. First, we derived the single depletion score for 
a given sgRNA K by averaging the depletion scores of K- 
control sgRNA pairs. Second, we calculated the double de- 
pletion score for each sgRNA pair by averaging the depletion 

scores from both perturbations. Third, the interaction score of 
each query-other sgRNA pair was then calculated as the neg- 
ative deviation between the observed double depletion score 
and the expected value derived from the linear fitting, normal- 
ized by the mean and standard deviation of the interaction 

scores of the query-control sgRNA pairs. Finally, we calcu- 
lated the interaction score for each enhancer pair by averag- 
ing the interaction scores of the selected sgRNA pairs, which 

ranked in the top 50% of sgRNAs targeting the same enhancer 
based on their single depletion scores. 

Calculation of network score 

We assigned a network score, calculated as the network con- 
nectivity, for each enhancer network in each condition during 
disease or development. 

Identification of network patterns during disease 

To distinguish Gained / Shared / Lost networks, we compared 

the network scores between disease and healthy conditions.
Enhancer networks ranked within the top 10% based on score 
difference were categorized as ‘Gained’, those within the bot- 
tom 10% as ‘Lost’ and the remaining as ‘Shared’. 

Calculation of network change score during disease 

To quantify the change of enhancer network during disease,
we focused solely on the altered components, and computed 

https://gtexportal.org/
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he network change score using the following formula: ∑ 

c i j 
[2] −

∑ 

c i j 
[1] . 

The co-accessibility between enhancer i and enhancer j was
enoted as c i j , where both enhancer i and enhancer j were en-
ancers that exhibited differential co-accessibility during dis-
ase. The superscript [2] indicated disease condition, while the
uperscript [1] indicates healthy condition. 

erformance evaluation in predicting disease genes

o evaluate the performance of enhancer networks in predict-
ng disease genes, we employed various scoring methods to
ank all genes. These scores included network change score,
etwork connectivity under both healthy and disease condi-
ions, as well as their differences, SE ranks based on H3K27ac
ownloaded from dbSUPER database ( 36 ), gene expression
ariance and overall chromatin accessibility . Subsequently , we
etermined the fold enrichment of disease genes among the
op-ranked genes using a sliding window of 100, with the en-
ire genome serving as background. 

dentification of network dynamics patterns 

o identify distinct network dynamics patterns during the dif-
erentiation or development processes, we used the network
cores matrix for each enhancer network at different develop-
ental stages as our input data. These developmental stages
ere categorized as Early, Middle and Late. We then converted

he input matrix into a three-column matrix to represent the
arly, Middle and Late stages by averaging the network scores

rom corresponding stages. Furthermore, enhancer networks
ith the highest network scores at the Early, Middle and Late

tages were assigned to the Early, Middle and Late groups,
espectively. 

alculation of network dynamic score during 

evelopment 

o quantify the change in network score along development,
e computed the network dynamic score using the following

ormula: √ ∑ n 
i =1 

(∑ 

c i j 
[ n ] − ∑ 

c i j 
[0] 

)2 

n − 1 
, where 

∑ 

c i j 
[0] = 

∑ n 
i =1 

∑ 

c i j 
[ i ] 

n 
. 

The co-accessibility between enhancer i and enhancer j was
enoted as c i j , where both enhancer i and enhancer j were en-
ancers that exhibited dynamic co-accessibility during devel-
pment, and n represents the number of stages. 

etrieval of cell identity and disease genes 

he cell identity genes were obtained from CellMarker
atabase ( https:// www.biolegend.com/ cell _ markers ). The dis-
ase genes were from MalaCards ( https://www.malacards.
rg ), OMIM ( https://omim.org ) and DisGeNET ( https://www.
isgenet.org/). The list of collected cell identity and disease
enes can be found in Supplementary Table S3 . 

nrichment analysis of cell identity genes 

n brief, given a gene group, the enrichment score was cal-
ulated as the fold enrichment relative to the genome back-
round, determined as ( m / n ) / ( M / N ), where m and M repre-
ent the number of cell identity genes within the group and
enome-wide, respectively, while n and N represent the num-
er of genes within the group and genome-wide, respectively.
Database construction 

The current version of eNetDB was developed using MySQL
8.0 ( http://www.mysql.com ) and maintained on a Linux-
based Nginx server. We used Python 3.8 ( https://www.python.
org/) and Tornado 6.1 ( https:// www.tornadoweb.org/ ) for
server-side scripting, including all the interactive functions.
The interactive frontend interface was designed and built
using vue 2 ( https:// v2.vuejs.org/ ) and element UI ( https://
element.eleme.io/), which is an approachable, performant and
versatile framework for building web user interfaces. 

Results 

eNet 2.0: a comprehensive tool for enhancer 
networks analysis 

eNet 2.0 is a comprehensive tool for enhancer network anal-
ysis using scA T AC-seq data. Similar to the original eNet al-
gorithm ( 25 ), eNet 2.0 constructs enhancer networks for
each gene using scA T AC-seq and scRNA-seq profiles as in-
put. An enhancer network depicts how multiple enhancers
coordinate gene expression, where nodes represent enhancers
and edges represent the PEIs (Figure 1 A). Meanwhile, eNet
2.0 provides three additional parts for network analysis, in-
cluding network topology, network comparison and network
dynamics. 

First, eNet 2.0 offers a wide range of functionalities for
network topological analysis, including enhancer module de-
tection, module-associated enhancer interactions and hub en-
hancers analysis (Figure 1 A and B). Specifically, we employed
the Louvain algorithm ( 27 ) to identify compact block clus-
ters or communities within the networks, termed as modules.
To determine the biological significance of the detected mod-
ules, we categorized enhancer pairs into two groups based
on their source modules: Intra (pairs of enhancers from the
same module) and Inter (pairs of enhancers from different
modules within the same network) (Figure 1 B, left). We then
compared enhancer pairs within each group from several as-
pects, including linear distance, chromatin co-accessibility, TF
binding similarity, and the propensity for synergistic or addi-
tive effects upon perturbations (Figure 1 B, left). Furthermore,
to investigate the hierarchy within modules, we introduced
module hub enhancers, in addition to network hub enhancers
in eNet 1.0 ( 25 ). To figure out whether and why module
hub enhancers are functionally important, we assessed their
enrichment of single-nucleotide polymorphisms (SNPs) from
GWASs, correlation with gene expression, and involvement
in eRNA transcription and enhancer–promoter interactions
(Figure 1 B, right). 

Next, the third part of eNet 2.0 is differential network
analysis, which aims to compare enhancer networks obtained
from two different biological conditions such as disease ver-
sus normal (Figure 1 A). To achieve this, we adapted DiffCoEx
( 28 ), a framework for analyzing differential co-expression
using transcriptomic data, with additional modifications. In
brief, starting from the adjacency matrices of enhancer net-
works under each condition, we quantified their differences
and subsequently employed topological overlap and hierar-
chical clustering to identify clusters of enhancers exhibiting
similar alteration patterns. The altered components represent
a group of enhancers that share common neighbors in the
graph formed by the differential network (Figure 1 C; ‘Ma-
terials and methods’ section). We defined a network change
score to quantify the magnitude of network alterations in dis-

https://www.biolegend.com/cell_markers
https://www.malacards.org
https://omim.org
https://www.disgenet.org/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
http://www.mysql.com
https://www.python.org/
https://www.tornadoweb.org/
https://v2.vuejs.org/
https://element.eleme.io/
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Figure 1. Ov ervie w of eNet 2.0. ( A ) eNet 2.0 comprises f our k e y components f or comprehensiv e enhancer netw ork analy sis: (i) enhancer netw ork 
construction by utilizing scA T AC-seq and scRNA-seq data as input, similar as eNet 1.0 ( 26 ); (ii) module identification within enhancer networks using 
L ou v ain algorithm; (iii) network comparison analysis by comparing enhancer networks from distinct conditions, such as healthy versus disease states; 
and (iv) network dynamics analysis by examining enhancer networks in time-series data, such as various developmental stages. ( B ) Diagram showing 
the characterization of (i) module-related enhancer interactions (left) and (ii) module hub enhancers (right). (i) Enhancer pairs are classified as intra (within 
the same module) or inter (across different modules), and are subsequently compared in terms of linear distance, chromatin co-accessibilit y, similarit y in 
TF binding and synergy effects upon perturbations. (ii) Module hub enhancers are compared with other enhancers by evaluating their enrichment of 
GWAS SNPs, correlation with gene expression, enrichment of eRNA and enhancer–promoter interactions. ( C ) Diagram showing the processes to 
identify differential or dynamic modules during disease and de v elopment. T he steps included (i) computing the adjacency matrix using Cicero to 
represent co-accessibility between enhancers for each condition, (ii) calculating the difference adjacency, denoted as D to quantify the overall change in 
co-accessibilit y bet w een enhancers, (iii) deriving a topological o v erlap-based dissimilarity matrix, referred to as T , from the adjacency change matrix D 

and (iv) performing hierarchical clustering on the dissimilarity matrix T to identify enhancers exhibiting varying co-accessibility. 

 

 

 

 

 

 

 

 

 

 

 

 

ease and healthy states, calculated as the weighted edge degree
among the altered components under disease conditions sub-
tracted from that under healthy conditions (Figure 1 A; ‘Ma-
terials and methods’ section). 

Last, network dynamics analysis enables the comparison of
enhancer networks in time-series data, such as various stages
during tissue development (Figure 1 A). The computational
procedures are similar to those employed in differential net-
work analysis, albeit with slight modifications in Step 2 (Fig-
ure 1 C; ‘Materials and methods’ section). Similarly, we defined
a network dynamic score to quantify the extent of changes in
enhancer network across multiple developmental stages, cal-
culated as the standard deviation of the weighted edge degree
among the altered components across all stages (Figure 1 A; 
‘Materials and methods’ section). 

Collectively, eNet 2.0 enables comprehensive analysis of en- 
hancer networks, facilitating a deeper understanding of the in- 
tricate interplay between enhancers in gene regulation and its 
implications across diverse biological processes (BPs). 

Enhancer networks are modularly org aniz ed 

Compared with eNet, the first feature of eNet 2.0 is net- 
work module analysis, which included enhancer module de- 
tection, inter- / intra-module enhancer interactions and hub en- 
hancers analysis. To test these functions, we applied eNet 2.0 
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Figure 2. Modular organization of enhancer network provides transcriptional robustness in hematopoiesis. ( A ) The human blood dataset ( 37 ). ( B ) Pie 
chart showing the number and percentage of enhancer networks with modular str uct ure (modular) or without modular str uct ure (non-modular). ( C ) 
R epresentativ e modular or non-modular enhancer network. Characterization of the features of inter- and intra-module enhancer pairs, including linear 
dist ance bet ween enhancer pairs ( D ); chromatin co-accessibilit y bet ween enhancer pairs calculated using Cicero ( 24 ) ( E ), using randomly selected 
enhancer pairs as control. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. 
( F ) B o xplot comparing the similarit y of TF binding , quantified by cosine similarit y, bet ween inter- and intra-module enhancer pairs, using randomly 
selected enhancer pairs as control. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not 
significant. ( G ) Diagram showing the method to define enhancer-associated eQTL. Gene-associated eQTL, indicated by vertical lines, are those linked to 
Gene X. Enhancer-associated eQTL, within the regions of a specific enhancer regulating Gene X, are also delineated. ( H ) Bar plot showing the 
enrichment of SVPs in different groups including Inter, Intra and Random. P -values were calculated using two-sided binomial test. * P < 0.05; 
** P < 0.01; *** P < 0.001; n.s., not significant. ( I ) Bar plot showing the percentage of SEPs in different groups including Inter and Intra. P -values were 
calculated using two-sided binomial test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. (J–L) BLK enhancer network. It comprises 14 
constituent enhancers, organized into two modules ( J ). Genome browser track of BLK putative enhancer cluster, consisting of 14 enhancers, accessible 
in different cell types. The number of enhancer-associated eQTLs is indicated ( K ). Violin plot showing the distribution of −log 10 ( P -value) of the synergistic 
model applied to variant pairs located in distinct enhancer pairs (inter and intra) from BLK enhancer networks, using random permutations as control ( L ). 
The number and percentage of SVPs (interactive term P value < 0.01) and SEPs in both Inter and Intra groups were labeled in the upper left corner ( L ). 
( M ) Genome browser track of MYC putative enhancer cluster, consisting of seven enhancers, accessible in K562 cells (top). The modular enhancer 
network of MYC (bottom). ( N and O ) Experimental validation of enhancer interactions adapted from Lin et al. ( 17 ). Heatmap depicting cell proliferation 
effects from multiple x ed CRISPRi perturbations of various combinations of MYC enhancers E1–E7 ( N ). Representative examples of enhancer pair 
interactions: inter-modular pair (E3 and E7) demonstrating synergistic effects on cell proliferation (top), and intra-modular pairs (E1 and E4) showing 
additive effects (bottom). The regions bounded by dashed lines indicate the expected additive effects based on individual enhancer perturbations ( O ). 
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on a hematopoiesis dataset reported in a broadly cited liter-
ature ( 37 ) (Figure 2 A). In total, eNet 2.0 identified 10 443
enhancer networks, involving 109 482 PEIs among 64 792
enhancers. The size of these networks ranged from 1 to
101, with a median size of 4 ( Supplementary Figure S1 A).
The accuracy of these enhancer networks was confirmed
at both enhancer–gene and enhancer–enhancer interaction
levels, using the ABC model and Hi-C data as gold stan-
dards (see ‘Materials and methods’ section). Notably, we
observed particularly high enhancer–gene mapping accuracy
(47.1%) for hematopoiesis-related genes ( Supplementary 
Figure S1 B), and a consistent pattern between PEIs and Hi-
C data ( Supplementary Figure S1 C and D). Network topol-
ogy analysis identified 2175 (20.83%) modular networks,
which contained at least two modules within enhancer net-
works (Figure 2 B). Most modular networks contained two
modules, with each module typically comprising 2–27 en-
hancers ( Supplementary Figure S1 E). Notably, genes regulated
by modular enhancer networks showed higher expression lev-
els and cell-type specificity compared to those regulated by
non-modular networks ( Supplementary Figure S1 F and G).
In addition, these modular network-regulated genes were en-
riched in hematopoiesis-related pathways, while non-modular
network-regulated genes were associated with basic cellular
pathways such as cell cycle ( Supplementary Figure S1 H). For
instance, the enhancer network controlling FLT3, a crucial cy-
tokine receptor in hematopoiesis, displayed a modular orga-
nization with two distinct modules (Figure 2 C, left). In con-
trast, BRAT1, which regulates cell cycle checkpoint signaling,
showed a non-modular network structure (Figure 2 C, right). 

Next, to understand the biological significance of the de-
tected modules, we compared inter- and intra-module en-
hancer interactions. First, we quantified the linear distance
between enhancer pairs within each group and observed a
significantly higher linear proximity within the Intra group
(Figure 2 D). Additionally, we noted that the enhancer pairs
in Intra group exhibited higher co-accessibility scores as
well as mutual information than Inter group (Figure 2 E and
Supplementary Figure S1 I). To investigate the involvement
of TFs in gene regulation, we first quantified the similarity
of TF motifs on enhancer pairs using cosine similarity (see
‘Materials and methods’ section). The Intra group displayed
higher similarity in TF motifs on enhancer pairs compared
to the Inter group, using the Random group as background
( Supplementary Figure S1 J). Additionally, we curated ChIP-
seq data for 361 human blood-related TFs from CistromeDB
( 31 ). We evaluated the similarity of TF binding on enhancer
pairs of the two groups, and observed a consistent trend where
intramodular enhancer pairs displaying higher similarity of
TF binding than intermodular pairs (Figure 2 F). Overall, these
findings suggested that enhancer networks are organized into
modules, where enhancers within each module are close in lin-
ear distance and highly interactive, sharing similar TF binding
profiles. 

Inter-module enhancer interactions exhibit 
synergistic effects on gene expression 

A recent study reveals a nested epistasis enhancer network for
robust gene expression regulation using multiplexed CRISPRi
perturbation of ultralong-distance enhancers at the MYC lo-
cus ( 17 ). Inspired by this finding, we next evaluated whether
genetic variants on inter-module enhancer pairs, which span
spatial separation, can alter gene regulation in a synergis- 
tic manner. To achieve this, we downloaded eQTL data for 
human blood samples from the GTEx portal ( https://www. 
gtexportal.org/), leveraged eQTL variants within enhancers 
(enhancer-associated eQTL) to simulate the perturbation of 
corresponding enhancers, and fitted a linear regression model 
with an interaction term to analyze the combined effects of 
perturbing an enhancer pair on gene expression (Figure 2 G; 
‘Materials and methods’ section). Our analysis uncovered that 
inter-module enhancer variants interacted more frequently to 

alter target gene expression than intra-module enhancer vari- 
ants ( Supplementary Figure S1 K). Further, we defined SVPs 
as those that synergistically alter gene expression by assess- 
ing the significance of the interaction term (see ‘Materials 
and methods’ section). We calculated the enrichment score 
of SVPs in three groups (Inter, Intra and Random). Inter- 
estingly, the Inter group exhibited the highest enrichment of 
SVPs (Figure 2 H). Additionally, for each SVP, we calculated 

an AIC score to determine if the synergistic model fitted bet- 
ter compared to the additive model, with a lower AIC score 
indicates better fitness (see ‘Materials and methods’ section).
As expected, our analysis revealed that the AIC score of the 
synergistic model was lower than that of the additive model 
( Supplementary Figure S1 L). 

Next, we extended this analysis to the enhancer level by 
defining SEPs as those containing at least one SVP, and cal- 
culating the percentage of SEPs in each group (see ‘Materials 
and methods’ section). We found a significantly higher propor- 
tion of SEPs in Inter group than Intra group (Figure 2 I). An 

illustration from our analysis is the regulation of BLK , a gene 
encoding a crucial player in B-cell receptor signaling and de- 
velopment, by an enhancer network consisting of 14 elements 
arranged into two modules (Figure 2 J). Notably, seven of these 
enhancers (E1, E6, E7, E9, E12, E13 and E14) harbored at 
least 1 eQTL, totaling 16 eQTLs (Figure 2 K). These eQTLs 
formed 105 pairwise combinations, with 55 pairs belonging 
to the Inter group and 50 to the Intra group. Interestingly,
at the variant level, we identified 7 SVPs out of 55 enhancer 
pairs (12.7%) in the Inter group, contrasting with only 1 SVP 

among 50 pairs (2%) in the Intra group (Figure 2 L). At the 
enhancer level, we identified 4 SEPs out of 10 enhancer pairs 
(40%) in the Inter group, whereas only 1 SEP was detected 

among 11 pairs (9.1%) in the Intra group (Figure 2 L). These 
results indicated that the inter-modular enhancer pairs, which 

mainly enriched SEPs, did exert a synergistic influence on gene 
expression. 

To further validate our results, we applied eNet 2.0 to 

analyze the enhancer network consisting of seven enhancers 
(namely E1–E7) regulating MYC, where both additive and 

synergistic effect between enhancers have been observed 

through multiplexed CRISPRi screen experiments ( 17 ). Our 
analysis of the MYC enhancer network revealed two distinct 
modules: one comprising enhancers E1–E4 and another con- 
taining enhancers E5–E7 (Figure 2 M). Based on our earlier 
findings (Figure 2 G–I), enhancers from different modules were 
predicted to interact synergistically to regulate gene expres- 
sion, while enhancers within the same module would demon- 
strate additive effects. Strikingly, utilizing the multiplexed 

CRISPRi screen data generated by Lin et al. ( 17 ), we confirmed 

this observation that enhancers from different modules con- 
tributed synergistically to cell proliferation, while enhancers 
within the same module (e.g. E1–E4 or E5–E7) showed addi- 
tive effects (Figure 2 N; ‘Materials and methods’ section). For 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://www.gtexportal.org/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
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xample, individual perturbations of enhancers E1, E3, E4 or
7 had mild impact on cell proliferation. However, simulta-
eous disruption of inter-module enhancer pairs (e.g. E3 and
7) dramatically reduced cell growth, whereas concurrent per-
urbation of intra-module pairs (e.g. E1 and E4) showed only
dditive effects (Figure 2 O). These observations aligned pre-
isely with the findings from the original study ( 17 ). These
esults not only validated the accuracy of eNet 2.0 but also
nderscored the critical importance of enhancer networks in
ene regulation and cell viability. 

Together, our findings suggested that enhancer modules,
hich were spatially separated, contributed to the robustness
f enhancer networks against perturbations. 

odule hub enhancers are functionally important 

o delve deeper into the hierarchy of each module within en-
ancer networks, we introduced the concept of module hub
nhancers, distinct from the network hub enhancers in our
revious study ( 25 ,26 ) (Figure 1 A; ‘Materials and methods’
ection). In the human blood dataset, we identified 5000 en-
ancers for both module hub and network hub, with 2941 en-
ancers found to overlap between the two sets, referred to as
Ovlp’ (Figure 3 A and Supplementary Figure S2 A). Compre-
ensive characterization revealed that module hub enhancers
ossess distinct features compared to network hub and non-
ub enhancers ( Supplementary Table S4 ). These features in-
luded closer linear distance to promoter ( Supplementary 
igure S2 B), increased chromatin accessibility (evidenced by
cA T AC-seq, bulk A T AC-seq and DNase-seq data, H3K4me1
hIP-seq signals) (Figure 3 B and Supplementary Figure S2 C),

tronger enhancer activity (demonstrated by eRNA levels and
3K27ac ChIP-seq signals) (Figure 3 C and Supplementary 
igure S2 C), and more robust correlation with gene expres-
ion (supported by single-cell and RIC-seq data) (Figure 3 D
nd E). Notably, module hub enhancers showed significant
igher enrichment for GWAS SNPs, particularly those linked
o hematopoiesis, highlighting their functional significance in
ene regulation (Figure 3 F and Supplementary Figure S2 D).
o elucidate the roles and potential mechanisms of differ-
nt hub enhancers in gene regulation, we analyzed their net-
ork properties and interactions. Module hub enhancers ex-
ibited the highest betweenness centrality, indicating their
unction as critical network bridges (Figure 3 G). Further-
ore, module hub-associated inter-module enhancer pairs

howed the strongest tendency toward synergistic interactions
 Supplementary Figure S2 E and F), highlighting their pivotal
ole in facilitating enhancer synergy. 

Collectively, these findings reveal that enhancer networks
ossess not only modular organization with biological signifi-
ance, but also a hierarchical structure within individual mod-
les, where module hub enhancers play critical roles (Figure
 H). This hierarchical organization provides new insights into
he complexity of enhancer-mediated gene regulation. 

lterations of enhancer network correlate with 

bnormal gene expression in disease 

he second feature in eNet 2.0 is the network compari-
on analysis part, which aims to compare enhancer net-
orks obtained from two different biological conditions.
o this end, we applied it to the single-cell transcriptomic
nd chromatin landscapes of bone marrow and peripheral
lood mononuclear cells from both mixed-phenotype acute
leukemia (MPAL) patients and healthy donors ( 37 ) (Figure
4 A). In total, we built 10 443 enhancer networks in MPAL
and healthy donors, respectively (Figure 4 B; ‘Materials and
methods’ section). To test whether the changes of enhancer
networks might be disease-relevant, we first assessed GWAS
SNP enrichment among enhancers ranked based on changes of
chromatin co-accessibility . Interestingly , we found the changes
of chromatin co-accessibility of enhancer interactions showed
a clear correlation with GWAS SNP enrichment (Figure 4 C,
left). Notably, this association was not evident when clas-
sifying enhancers solely based on changes in chromatin ac-
cessibility (Figure 4 C, right). To further validate these find-
ings, we identified differentially expressed genes (DEGs) and
differentially accessible regions (DARs) by comparing MPAL
patients with healthy donors. We categorized DEGs into
two groups: Disease (blood-related disease genes) and Other
genes. Analysis of DAR distribution showed that over 70% of
disease-associated genes were associated with multiple DARs,
a significantly higher proportion compared to other genes
( Supplementary Figure S5 A). These findings indicated that sig-
nificant changes in disease-related gene expression are typ-
ically driven by the coordinated regulation of multiple en-
hancers, rather than by individual enhancers acting alone. 

To systematically identify the differential enhancer net-
works during disease progression, we compared enhancer
networks in MPAL to healthy donors. It resulted in a total
of 862 Gained, 1225 Lost and 8356 Shared enhancer net-
works (Figure 4 D; ‘Materials and methods’ section). The en-
hancers within Gained and Lost enhancer networks displayed
higher enrichment of hematopoiesis-related GWAS SNPs com-
pared to those in Shared enhancer networks (Figure 4 E).
Moreover, leukemia-associated eRNA were mainly enriched
in Gained enhancer networks, while normal hematopoiesis-
related eRNA were mainly enriched in Lost enhancer net-
works (Figure 4 F). We next examined the changes in gene
expression to investigate whether the alterations of enhancer
networks correlate with abnormal gene expression. To this
end, we conducted a DEG analysis using matched scRNA-
seq data, and compared the log 2 fold change (log 2 FC) values
of genes controlled by three modes including Gained, Shared
and Lost. Remarkably, the Gained group exhibited the high-
est log 2 FC value, while the Lost group showed the lowest
log 2 FC value (Figure 4 G). These observations strongly sug-
gested that changes in enhancer networks were closely associ-
ated with aberrant gene expression, indicating their potential
role in driving abnormal gene expression in disease. 

Enhancer network change score in eNet 2.0 

predicts disease genes 

Next, we sought to investigate whether alterations in en-
hancer networks during disease progression, as measured by
network change score, can prioritize genes associated with
blood-related diseases. To test this, we ranked enhancer net-
works according to several metrics: the network change score
calculated via eNet 2.0; the network connectivity—a fea-
ture previously demonstrated in eNet 1.0 ( 25 ) to correlate
with disease-linked genes—evaluated separately for diseased
and healthy conditions, alongside the discrepancy between
the two states; additionally, we incorporated SE ranks based
on H3K27ac signal, as well as ExpressionChange obtained
from DEG analyses, employing overall chromatin accessibility
levels as control (see ‘Materials and methods’ section). Sub-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
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Figure 3. Module hub enhancers are functionally important. ( A ) Venn plot showing two types of hub enhancers (module hub enhancers and network 
hub enhancers) and their o v erlap (Ovlp enhancers). ( B ) B o xplot sho wing the a v erage chromatin accessibility of enhancers across v arious groups: Ovlp, 
ModuleHub_Only, NetworkHub_Only and NonHub. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; ** P < 0.01; 
*** P < 0.001; n.s., not significant. ( C ) Enrichment of eRNA from FANTOM5 project ( 38 ) in different groups of enhancers including Ovlp, 
ModuleHub_Only, NetworkHub_Only and NonHub, using the whole genome as the background. P -values were calculated using the two-sided binomial 
test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( D ) B o xplot sho wing the correlation between enhancers and target genes across various 
groups: Ovlp, ModuleHub_Only, NetworkHub_Only and NonHub. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; 
** P < 0.01; *** P < 0.001; n.s., not significant. ( E ) Enrichment of enhancer–promoter pairs from RIC-seq data ( 32 ) across various groups: Ovlp, 
ModuleHub_Only, NetworkHub_Only and NonHub, using the whole genome as the background. P -values were calculated using the two-sided binomial 
test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( F ) Enrichment of blood-related GWAS SNPs in different groups of enhancers including 
Ovlp, ModuleHub_Only, NetworkHub_Only and NonHub, using the whole genome as the background. P -values were calculated using the two-sided 
binomial test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( G ) B o xplot comparing the betw eenness centrality of enhancers across various 
groups: Ovlp, ModuleHub_Only, NetworkHub_Only and NonHub. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; 
** P < 0.01; *** P < 0.001; n.s., not significant. ( H ) Model of modular enhancer network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequently, we curated blood-related disease genes from the
MalaCards database and assessed the enrichment of these
genes within the list of top-ranked genes related to enhancer
networks based on distinct scores, using the entire genome as
background (Figure 4 H; ‘Materials and methods’ section). We
found that DEGs, which compared disease with healthy con-
ditions, can partially identify disease-related genes. Notably,
SE ranks outperformed DEGs, underscoring the additional in-
sights provided by epigenetic analysis. In addition, the assess-
ment of network connectivity in healthy / disease states and
their disparities can also aid in the identification of disease
genes and outperformed SE, suggesting that the interactions
between enhancers provided additional information than en- 
hancer clusters. Most importantly, the network change score 
(eNet 2.0) demonstrated the best performance with 14.4-fold 

enrichment in top 100 genes, superior to original eNet 1.0 ( 25 ) 
and other methods (Figure 4 H). Moreover, the gene set enrich- 
ment analysis (GSEA) based on network change score revealed 

the significant enrichment of the disease ontology associated 

with acute leukemia (Figure 4 I). These findings underscored 

the pivotal roles of altered enhancer networks in driving ab- 
normal gene expression, particularly in disease-related genes.
For instance, in our analysis, the DOK1 gene, implicated 

in leukemia, showed a regulatory network of 14 enhancers 



Nucleic Acids Research , 2025, Vol. 53, No. 2 11 

Figure 4 eNet 2.0 identifies differential enhancer networks in MPAL. ( A ) The MPAL dataset, including single-cell multi-omics profiles from bone marrow 

and peripheral blood mononuclear cells from MPAL patients and healthy donors ( 37 ). ( B ) Scatter density plots showcasing the enhancer networks in 
blood samples from healthy (left) and MPAL (right), with the x -axis displaying the network size and the y -axis indicating network connectivity. Top 10 
genes ranked by network connectivity are labeled. ( C ) Bar plot showing the enrichment of GWAS SNPs in diverse groups ordered by the change of 
chromatin co-accessibility as well as accessibility between healthy and MPAL groups. P -values were calculated using binomial test. * P < 0.05; 
** P < 0.01; *** P < 0.001; n.s., not significant. ( D ) Diagram showing the definitions of Gained / Shared / Lost enhancer networks (left), and the pie chart 
(right) displaying the percentages of these three types of enhancer networks. Bar plot showing the enrichment of blood-related GWAS SNPs ( E ) and 
leukemia- / blood-related eRNA ( F ) across various groups including Gained, Shared and Lost, using the whole genome as background. P -values were 
calculated using two-sided binomial test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( G ) B o xplot sho wing the log 2 FC distribution of gene 
expression in leukemia patients compared to healthy donors within different groups: Gained, Shared and Lost. P -values were calculated using two-sided 
unpaired Student’s t -test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( H ) Enrichment of hematopoiesis-related disease genes ( y -axis) for 
the top-ranked genes ordered by several metrics measured by (i) network change score, (ii) network connectivity under healthy conditions, (iii) network 
connectivity under disease conditions, (iv) the difference in network connectivity comparing disease to healthy condition, (v) SE ranks based on H3K27ac 
signals calculated by ROSE ( 4 ), (vi) ExpressionChange comparing the gene expression between disease and healthy conditions and (viii) overall 
chromatin accessibility. ( I ) The significantly enriched disease ontology associated with acute leukemia determined through GSEA analysis based on 
network change score. ( J ) Genome browser track of DOK1 putative enhancer cluster, consisting of 14 enhancers, accessible under healthy (top) and 
disease (bottom) conditions, with 7 differential enhancers in co-accessibility highlighted. ( K ) Violin plot showing DOK1 relative expression under healthy 
(top) and disease (bottom) conditions. P -values were calculated using two-sided unpaired Student’s t -test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., 
not significant. ( L ) Enhancer network regulating DOK1 under healthy (top) and disease (bottom) conditions, with seven enhancers in Gained network 
highlighted. 
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(Figure 4 J and L). Of note, while no observable differ-
ence in chromatin accessibility was detected between the
two states, a significant discrepancy was noted in chromatin
co-accessibility (Figure 4 J). Our network comparison anal-
ysis revealed that, compared with the healthy condition,
DOK1 gained a distinct differential enhancer network in-
volving seven enhancers in MPAL (Figure 4 L). Concurrently,
DEG analysis confirmed its significant up-regulation in MPAL
(Figure 4 K). 

To understand the superior performance of Net-
workChangeScore, we compared the top 500 genes identified
by these seven different metrics. Our analysis revealed that
metrics based on network connectivity showed substantial
gene overlap with each other, while differential expression-
based metrics ExpressionChange shared few genes with
other metrics ( Supplementary Figure S5 B). Particularly, when
comparing NetworkChangeScore and ExpressionChange, we
found these two methods identified distinct sets of genes, with
only 11 overlapping genes ( Supplementary Figure S5 C). 

We found genes identified by NetworkChangeScore showed
higher change of network connectivity, but minor changes
on gene expression, comparing with DEGs ( Supplementary 
Figure S5 D and E). We speculated NetworkChangeScore tend
to identify upstream regulators with key regulatory roles,
whereas mRNA profiling frequently detects downstream tar-
gets with dramatic expression changes. Indeed, genes with
high NetworkChangeScore are typically regulated by a greater
number of enhancers and show higher enrichment in TFs cu-
rated from JASPAR database ( Supplementary Figure S5 F and
G). Despite their significant enhancer network changes, these
genes often do not exhibit dramatic expression changes them-
selves ( Supplementary Figure S5 D and E). 

These findings collectively demonstrate that our network
comparison analysis identifies key regulatory genes that might
be ignored by conventional differential expression analysis,
providing crucial insights into disease progression through the
lens of enhancer networks. 

Dynamics of enhancer networks ensure precise 

temporal expression during development 

To evaluate the network dynamics analysis part of eNet 2.0,
we applied it to a differentiation trajectory spanning six
stages, from hematopoietic stem cells (HSC) to lymphoid-
primed multipotent progenitor (LMPP), common lymphoid
progenitor (CLP), naïve CD8 T cell (naïve CD8), CD8 cen-
tral memory T cell (CD8 CM) and ultimately to CD8 effector
memory T (CD8 EM) cells ( 37 ) (Figure 5 A). A total of 7310
enhancer networks were constructed for each stage along this
trajectory . Subsequently , we contrasted the enhancer networks
across the differentiation stages, identifying dynamic enhancer
networks by examining the presence of dynamic constituents
within each network. This led to the identification of 2853
dynamic and 4457 unchanged enhancer networks (Figure 5 B;
‘Materials and methods’ section). 

To further differentiate distinct dynamic patterns, we cat-
egorized all dynamic enhancer networks into three groups
based on their network scores: (i) ‘Early’ denoting networks
exhibiting the highest network score in the early stage (HSC),
(ii) ‘Middle’ representing networks with the highest network
score in the intermediate stages (LMPP and CLP) and (iii)
‘Late’ indicating networks with the highest network score in
the late stages (naïve CD8, CD8 CM and CD8 EM) (Fig-
ure 5 A and B; ‘Materials and methods’ section). This classi-
fication yielded 1688 Early, 1692 Middle and 639 Late dy- 
namic networks (Figure 5 B). We fitted a curve depicting the 
dynamics of network scores during cell differentiation for en- 
hancer networks within each group, which showed consistent 
dynamic patterns in line with our definition (Figure 5 C and 

Supplementary Figure S7 A). 
Next, we aimed to link distinct dynamic patterns of en- 

hancer networks to gene expression. To achieve this, we cal- 
culated the average gene expression values of each enhancer 
network at each stage, followed by fitting smooth curves to 

the average expression values of the six stages for each group.
Notably, our analysis revealed a high degree of synchronicity 
between the dynamics of enhancer networks and alterations 
in gene expression (Figure 5 C and D, and Supplementary 
Figure S7 A and B). Moreover, it was observed that the three 
dynamic groups (Early, Middle and Late) exhibited higher ex- 
pression levels as well as greater expression variation com- 
pared to the unchanged group (Figure 5 E). Additionally, the 
dynamic groups demonstrated higher enrichment of CD8 

+ T- 
cell-related cell identity genes than unchanged group (Figure 
5 F). For instance, we observed an enhancer network associ- 
ated with ADRB2 , the marker of effector CD8 

+ memory T 

(CD8 EM) cells, composed of 21 enhancers (Figure 5 H and J).
Notably, network dynamics analysis revealed a unique dense 
sub-network involving five enhancers at the Late stages (CD8 

CM and CD8 EM), which preceded high ADRB2 expression 

in CD8 EM cells (Figure 5 I and J). This finding suggested that 
dynamics of enhancer networks may serve as a predictive in- 
dicator for changes in gene expression. 

Next, we calculated a network dynamic score to quantify 
the degree of alterations for each dynamic enhancer network 

throughout differentiation (Figure 1 A; ‘Materials and meth- 
ods’ section). To further investigate the biological significance 
of these changes, we conducted GSEA. Our analysis revealed 

a significantly enriched term ‘alpha–beta T-cell differentia- 
tion’, which was closely linked to the function of CD8 

+ T 

cells (Figure 5 G). Intriguingly, the GSEA results using the net- 
work dynamic score revealed that all of the top 10 enriched 

BP terms were associated with immunity (Figure 5 K, left). In 

contrast, when we performed GSEA using the log 2 FC values 
derived from DEG analysis, only two immunity-related terms 
were found to be enriched (Figure 5 K, right). These results 
indicated that changes in enhancer networks offer a more 
comprehensive insight compared to gene-level analysis, aid- 
ing in the identification of key genes or pathways involved in 

differentiation. 
Together, these results highlighted the dynamic nature of 

enhancer networks regulating key genes, driving precise tem- 
poral expression during development. 

eNet 2.0 is robust and broadly applicable 

To comprehensively assess the broad applicability of the three 
primary functions in eNet 2.0, we applied it across a diverse 
range of tissue types and biological contexts. 

First, to rigorously evaluate whether modular organization 

of enhancer network exists across various biological contexts,
we analyzed two additional publicly available scA T AC-seq 

datasets, including human adult stomach and colon ( 39 ). Simi- 
lar to the findings in hematopoiesis, we identified around 10% 

networks with modular organization, featuring linear prox- 
imity, higher co-accessibility and interdependence, and similar 
TF motifs (Figure 6 A and B, and Supplementary Figures S3 A 

and B and S4 A and B). Importantly, inter-module enhancer 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1323#supplementary-data
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Figure 5. eNet 2.0 identifies dynamic enhancer networks along CD8 + T-cell differentiation. ( A ) Diagram illustrating the differentiation path from HSC to 
LMPP , CLP , naïv e CD8, CD8 CM and finally to CD8 EM cells. T he stages are categoriz ed as Early (HSC), Middle (LMPP and CLP), and Late (naïv e CD8, 
CD8 CM and CD8 EM). ( B ) Diagram (left) showing the definitions of stage-specific networks (including Early, Middle and Late), Unchanged network 
across cellular differentiation, and the pie chart (right) displaying the percentages of these four groups. The curve displaying the fitted network score ( C ) 
and gene expression ( D ) of enhancer networks within diverse groups (Early, Middle, Late and Unchanged) across six stages as depicted in panel ( A ). ( E ) 
B o xplot sho wing the distribution of gene e xpression v ariation across stages within distinct groups (Early, Middle, Late and Unchanged). P -v alues w ere 
calculated using two-sided unpaired Student’s t -test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( F ) Enrichment of CD8 + T-cell-related cell 
identity genes in different groups (Early, Middle, Late and Unchanged), using the whole genome as background. P -values were calculated using the 
two-sided binomial test. * P < 0.05; ** P < 0.01; *** P < 0.001; n.s., not significant. ( G ) The top-ranked enriched BP pathway identified via GSEA based 
on network change score. ( H ) Enhancer network regulating ADRB2 along CD8 + T-cell differentiation, with five enhancers in differential modules 
highlighted. ( I ) Violin plot showing ADRB2 relative expression in each of the six stages shown in ( A ) along CD8 + T-cell differentiation. ( J ) Enhancer 
network regulating ADRB2 along CD8 + T-cell differentiation, with five dynamic enhancers highlighted. ( K ) Top 10 enriched BP pathw a y s as determined by 
gene set enrichment analysis (GSEA), based on network change score (left) and log 2 FC value of DEGs (right), with immune-related pathw a y s highlighted. 



14 Nucleic Acids Research , 2025, Vol. 53, No. 2 

Figure 6 eNet 2.0 is robust across various tissues and biological contexts. Linear distance, chromatin co-accessibility and TF motif similarity between 
enhancer pairs, as well as enrichment of SEPs from diverse groups (Inter, Intra and Random) in human adult stomach ( A ) and colon ( B ) datasets, 
respectiv ely. P -v alues w ere calculated using tw o-sided unpaired Student’s t -test and the tw o-sided binomial test. * P < 0.05; ** P < 0.0 1; *** P < 0.00 1; 
n.s., not significant. Enrichment of GWAS SNPs, disease-specific eRNA and disease-related genes in human T2D ( C ) and AD ( D ) datasets, respectively. 
P -v alues w ere calculated using the tw o-sided binomial test. * P < 0.05; ** P < 0.0 1; *** P < 0.00 1; n.s., not significant. Dynamics of enhancer network 
and gene expression, and enrichment of cell identity genes in developing human fetal hearts ( E ) and human cerebral cortex ( F ) datasets, respectively. 
P -v alues w ere calculated using the tw o-sided binomial test. * P < 0.05; ** P < 0.0 1; *** P < 0.00 1; n.s., not significant. 
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airs consistently exhibited synergistic effects on gene reg-
lation (Figure 6 A and B, and Supplementary Figures S3 C
nd D and S4 C and D). Furthermore, hub enhancers showed
igher chromatin accessibility, strong correlations with gene
xpression, as well as higher enrichment of GWAS SNPs
 Supplementary Figures S3 E–I and S4 E–I). Taken together, we
rovided robust evidence supporting the widespread existence
f functionally significant modular organization within en-
ancer networks, highlighting the susceptibility of hub en-
ancers to diseases due to their close ties to gene expression. 
Next, in order to assess the robustness of network compari-

on analysis, we conducted parallel analyses to identify differ-
ntial enhancer networks and their biological significance in
ype 2 diabetes (T2D) ( 40 ) and Alzheimer’s disease (AD) ( 41 ).
onsistent with the findings in MPAL dataset, we noted a dis-

inct correlation between the alterations in enhancer interac-
ions and the enrichment of GWAS SNPs, which was not evi-
ent for chromatin accessibility ( Supplementary Figure S6 A
nd C). Additionally, ∼10% of enhancer networks exhib-
ted gained or lost activity throughout disease progression,
herein the enhancers displayed higher enrichment of disease-

elevant GWAS SNPs and tissue-related eRNA (Figure 6 C and
, and Supplementary Figure S6 B and D). Notably, the net-
ork change score demonstrated exceptional performance in
redicting disease genes (Figure 6 C and D). Collectively, these
ndings underscored the correlation between altered enhancer
etworks and disease genes throughout disease progression. 
Last, to evaluate the robustness of network dynamics anal-

sis, we obtained scA T AC-seq data for the developing human
etal heart at post-conceptional weeks (PCW) 6, 8 and 19 ( 42 ),
nd human cerebral cortex at PCW 16, 20, 21 and 24 ( 43 ).
imilar to the findings in CD8 

+ T-cell differentiation, ∼50%
f enhancer networks exhibited dynamic activity throughout
eart and brain development, aligning with the dynamics of
ene expression (Figure 6 E and F, and Supplementary Figure 
7 C and E). Moreover, these dynamic networks exhibited sig-
ificantly higher enrichment of cell identity genes (Figure 6 E
nd F). GSEA results indicated that the network dynamic
core prioritized more tissue-related pathways compared to
EG analysis, thereby providing strong validation of the ef-
cacy and reliability of our method in pinpointing genes rel-
vant to cell fate determination ( Supplementary Figure S7 D
nd F). 

In summary, eNet 2.0 showed robustness in analyzing en-
ancer networks across diverse biological contexts, spanning
issue types, disease states and developmental stages. 

NetDB to explore enhancer networks in various 

uman and mouse tissues 

iven the evidence supporting the pivotal role of enhancer
etworks in elucidating gene regulation mechanisms, there
s an urgent need for a comprehensive enhancer network
atabase. To address this, we established eNetDB ( https://
netdb.huanglabxmu.com ), a database containing 80 high-
uality scA T AC-seq datasets (Figure 7 A and Supplementary 
able S1 ). The datasets were derived from different single-
ell sequencing platforms, including 10X genomics ( https://
ww.10xgenomics.com/), SHARE-seq ( 44 ), SNARE-seq ( 22 ),

ci-A T AC-seq3 ( 45 ) and sci-A T AC-seq ( 46 ) ( Supplementary 
igure S8 A). Among these datasets, 44 were derived from hu-
an samples and 36 from mouse samples ( Supplementary 
igure S8 B). Furthermore, we categorized these datasets into
two groups: tissues (comprising 72 datasets) and diseases
(comprising 8 datasets), representing samples from healthy tis-
sues and patients, respectively ( Supplementary Figure S8 C).
We identified key genes and enhancers in various human and
mouse tissues, integrating genomic annotations that include
known associations such as cell identity, diseases and pheno-
types (Figure 7 B). Furthermore, we incorporated GWAS SNPs,
eQTL and experimentally validated VISTA enhancers to pro-
vide comprehensive enhancer annotations (Figure 7 B). Our
platform not only allows users to browse public scA T AC-seq
datasets and access predicted key genes and enhancers, but
also offers an online eNet analysis module for customizing
single-cell chromatin accessibility data (Figure 7 C). Overall,
eNetDB is a comprehensive and user-friendly platform for
gene and enhancer research in human and mouse development
and diseases. 

Discussion 

In this study, we presented eNet 2.0, a comprehensive toolkit
for enhancer network analysis using scA T AC-seq data. This
new version significantly advances beyond our previous work
on eNet 1.0, both in methodology and in biological findings.
Methodologically, eNet 2.0 maintains the core capability of
constructing enhancer networks from scA T AC-seq data while
introducing three pivotal new modules: network topology,
network comparison and network dynamics analysis (Figure
1 A). Biologically, eNet 2.0 reveals two major advances. First,
it effectively identifies biologically relevant functional mod-
ules within enhancer networks. Second, through differential
and dynamic network analyses, it transcends the limitations
of eNet 1.0 that were confined to static network analysis and
unable to capture the dynamic nature of epigenetic regulation
during development and disease. Collectively, these improve-
ments provided deeper understanding of epigenetic regulation
in developmental processes and disease progression. 

The introduction of modular organization within enhancer
networks addressed challenges faced in elucidating the func-
tional significance of individual enhancers, which often do
not exhibit significant phenotypic effects upon deletion ( 47 ).
This long-standing issue is, in part, due to a limited compre-
hension of enhancer interactions, such as synergy, additivity
or redundancy. While Lin et al. illustrated synergy between
enhancers through multiplexed CRISPR screening, their ap-
proach is hampered by low throughput and high costs, and
they primarily relied on several disease-related genes as case
studies to illustrate the synergistic interactions between en-
hancers spanning ultra-long genomic distances ( 17 ). In con-
trast, our research extended this phenomenon to the genome
scale, by leveraging rich and readily available single-cell multi-
omics data to delve into the modular structure of enhancer
networks, revealing a tendency for synergistic interactions be-
tween enhancer pairs from different modules (Figures 2 G–I
and 6 A and B, and Supplementary Figures S3 C and S4 C).
Further investigation of network hierarchy uncovered a hi-
erarchical organization both globally and within modules.
Our model distinguishes two types of hub enhancers: Net-
workHub enhancers, characterized by high degree central-
ity, maintain the global network’s structural integrity, while
ModuleHub enhancers, with high betweenness centrality, fa-
cilitate inter-module communication and synergistic interac-
tions ( Supplementary Table S4 ). This modular arrangement
ensures robust local control through intra-module additive
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effects while enabling precise gene expression through inter-
module synergy (Figure 3 H). Our findings shed light on the
cooperative nature among enhancers and emphasize the im-
portance of considering their interactions when investigating
their functional roles. 

In comparison to the three-dimensional enhancer networks,
which often rely on Hi-C-based technologies ( 48 ), our ap-
proach using scA T AC-seq data provides a higher resolution
view of enhancer interactions, allowing us to capture the intri-
cate and dynamic interactions within enhancer networks with
greater fidelity. Benefit from this, our network comparison
and dynamics analyses effectively and robustly predicted dis-
ease genes and cell identity genes, outperforming traditional
SEs, DEG analysis ( 49 ) and our original method eNet 1.0
( 25 ,26 ) (Figures 4 H, 5 K, and 6 C and D, and Supplementary 
Figure S7 D and F). The richer insights obtained from enhancer
data over gene expression data, combined with the limita-
tions of eNet in providing causal relationship, underscored
the effectiveness of eNet 2.0. Overall, the changes and dynam-
ics in enhancer–enhancer interactions significantly improved
our understanding of disease progression and developmental
decisions. 

While eNet 2.0 shows impressive performance in detecting
biologically significant modules, identifying differential and
dynamic enhancer networks, and revealing epigenetic insights
in the context of disease and development, there is still poten-
tial for improvement. First, relying solely on the correlation
between chromatin accessibility and gene expression at the
single-cell level may lead to potential errors. To improve accu-
racy, future updates could consider integrating high-resolution
Hi-C data or employing advanced machine learning methods.
Additionally, further in vitro and in vivo experimental valida- 
tions are crucial to deepen our understanding of the regulatory 
roles of enhancer clusters under real biological contexts. 

In conclusion, eNet 2.0 represents a tool for the compre- 
hensive analysis of enhancer networks through the integration 

of single-cell multi-omics data. It holds the potential to ad- 
vance precision medicine by facilitating the identification of 
genes and enhancers linked to diseases and development, as 
well as revealing intrinsic regulatory mechanisms that could 

offer valuable insights for therapeutic interventions. 

Data availability 

The single-cell datasets utilized for eNet 2.0 and eNetDB 

analysis were curated from published studies, as listed in 

Supplementary Table S1 . The ABC model for assessing the 
accuracy of eNet 2.0 was download from https://mitra. 
stanford.edu/ engreitz/ oak/ public/ Nasser2021/ AllPredictions. 
AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt.gz . The 
MYC multiplexed CRISPRi screen data were obtained 

from published study GSE160768. Processed data for 
H3K27ac, H3K4me1 ChIP-seq, DNase-seq, A T AC-seq 

and Hi-C were downloaded from the ENCODE project,
with all accession IDs listed in Supplementary Table S1 .
eNetDB is freely accessible for users through the link 

( https://enetdb.huanglabxmu.com ) without registration or 
login. The code for eNet 2.0 analysis is available on GitHub 

( https:// github.com/ xmuhuanglab/ eNet2.0 ), which is linked 

to Zenodo (DOI: 10.5281 / zenodo.13349432). 
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